
1

ROAM: A Fundamental Routing Query on Road
Networks with Efficiency

Siqiang Luo, Reynold Cheng, Ben Kao, Xiaokui Xiao, Shuigeng Zhou, Jiafeng Hu

Abstract—Novel road-network applications often recommend a moving object (e.g., a vehicle) about interesting services or tasks on
its way to a destination. A taxi-sharing system, for instance, suggests a new passenger to a taxi while it is serving another one. The
traveling cost is then shared among these passengers. A fundamental query is: given two nodes s and t, and an area A on road
network graph G, is there a “good” route (e.g., short enough path) P from s to t that crosses A in G? In a taxi-sharing system, s and t
can be a taxi’s current and destined locations, and A contains all the places to which a person waiting for a taxi is willing to walk.
Answering this Route and Area Matching (ROAM) Query allows the application involved to recommend appropriate services to users
efficiently. In this paper, we examine efficient ROAM query algorithms. Particularly, we develop solutions for finding a ρ-route, which is
an s-t path that passes A, with a length of at most (1 + ρ) times the shortest distance between s and t. The existence of a ρ-route
implies that a service or task located at A can be found for a given moving object m, and that m only deviates slightly from its current
route. We present comprehensive studies on index-free and index-based algorithms for answering ROAM queries. Comprehensive
experiments show that our algorithm runs up to 30 times faster than baseline algorithms.

Index Terms—Road Networks, Query Performance, Indexing, Graph Algorithms

F

1 INTRODUCTION

L OCATION-based services, such as taxi-sharing and spatial
crowdsourcing, have attracted tremendous interest in recent

years. A taxi-sharing application (e.g., RYDE [1], Uber, Didi [2])
enables passengers to share a taxi ride; a spatial crowdsourcing
system (e.g., [3], [4], [5], [6]) invites a crowd-sourcing worker
to visit a given place to conduct a task (e.g., shooting photos
for a place of interest). These applications, which take users’
locations into account, provide convenient services and business
opportunities.

These applications often share a common characteristic: while
an object m (e.g., a taxi or a worker) is moving from origin s to
destination t, the system recommends to m a “service request”
(e.g., pick up a passenger, take a photo). Upon accepting the
service request, m traverses to the area associated with that
request, conducts the service, and then continues her journey to
t. Figure 1(a.1) shows an example in taxi-sharing in Shanghai,
a big city of China. A taxi, which picked up a passenger at
Shanghai museum (at location s), is traveling along the shortest
path (in gray) to Jing’an temple (at location t). The system tells
the taxi driver that a new passenger requested for a shared ride at
a shopping mall (the center of the circular area), who also plans
to go to t. Since the traffic is congested around the shopping mall,
the passenger is willing to walk a reasonable distance to increase
her chance of being shared ride, and suppose the circular area is

• Siqiang Luo, Reynold Cheng, Ben Kao and Jiafeng Hu are with the
Department of Computer Science, the University of Hong Kong.
e-mail: {sqluo, ckcheng, kao, jhu}@cs.hku.hk

• Xiaokui Xiao is with the School of Computing, National University of
Singapore, Singapore.
e-mail: xkxiao@nus.edu.sg

• Shuigeng Zhou is with Shanghai Key Lab of Intelligent Information
Processing, School of Computer Science, Fudan University, and Shanghai
Institute of Intelligent Electronics and Systems.
e-mail: sgzhou@fudan.edu.cn

where she agrees to be picked up. The driver accepts the request
from the passenger because there is a short route, as shown in
Figure 1(a.2), that takes a detour from s to the service area to
pick up the passenger, after which she continues to t. As another
example, Figure 1(b) illustrates a typical spatial crowdsourcing
task of taking a photo of a skyscraper in Shanghai (indicated by the
location pin enclosed with a large circular area). The large circular
area is the area within which shooting a photo of the building
is suitable. A volunteer crowd-sourcing worker, who commutes
between the Bund Center (at location s) and Shanghai old street
(at location t), can be recommended for this task, as there is a
short route (in grey) that starts at the Bund Center, going through
the area during which a photo of the building can be taken, and
finally goes to Shanghai old street.

To give a good service recommendation, a system should
consider the amount of effort needed for an object to move to
the suggested service area. Suppose that a service request e is in
an area A (e.g., a pick-up area, a photo-taking area, a shopping
centre). Then, an object m on a route from an origin s to a
destination t would be interested to handle e, only if its detour
from s to A does not seriously affect her original travel plan from
s to t. Before recommending e to m, therefore, the system should
check whether there is a “good” path from s to t that passes
through A. For example, the length of the path can be required to
be at most (1 + ρ) times the shortest distance from s to t, with
ρ ≥ 0 a parameter decided by the system or the object involved.
We refer to the problem of finding such a path (called ρ-route) the
ROute and Area Matching (ROAM) query. For instance, the route
in Figure 1 (a.2) is a ρ-route for ρ ≥ 4.3

3.3 − 1, because the length
of the detour path is less than (1 + ρ) times the shortest distance
between s and t. Moreover, this ρ-route passes through the pick-
up area A, and so the ρ-route is an answer to the ROAM query on
(s, t,A) for any ρ ≥ 4.3

3.3 − 1.

Drawbacks of Existing Solutions. A naive way of answering a

2

(a.1) Taxi-sharing: shortest path

(a.2) Detour route (r-route) (b) Spatial crowdsourcing

ss

tttt

tttt

ss

3.3 km

4.3 km

ss

tttt

Fig. 1: Illustrating ROAM queries.

ROAM query is to examine all paths from s to t, and check if
there is a ρ-route that intersects A. This solution is prohibitively
expensive, due to the enormous number of paths that have to be
examined. While a large body of works study the retrieval of the
shortest path between two graph nodes [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19]), it is not clear how
they can be extended to take into account the detour incurred
by handling a service request. A few recent works in spatial
crowdsourcing [4], [5], [6] and taxi-sharing [20], [21], [22], [23],
[24] start to address this issue, but the techniques proposed suffer
from at least one of the following deficiencies. First, they gauge
the distance between object m and service request e by their
Euclidean distance. As pointed out in [10], Euclidean distance
is often inaccurate, since an object’s movement is constrained
by a road network. Second, previous works assume that e is
handled at a precise location; in practice, e can be served in a
region. In taxi-sharing, a passenger may walk to a pick-up location
nearby; a spatial crowdsourcing task, such as taking photos for
a monument, can be done within some distance from it. (One
example is in Figure 1 (b), where the photo-taking area crosses a
river.) Moreover, when location privacy is a concern, the system
may not even have access to the precise location of the service
request. For instance, a passenger asking for a shared ride in
a sensitive area (e.g., a hospital) may “cloak” her position by
submitting a larger region to the system [25]. Therefore, none
of the existing techniques can effectively support ROAM queries.

Our Contributions. We conduct an in-depth study on the ROAM
query, which is fundamental to a multitude of applications (more
discussions can be referred to Section. 8). Our contributions are
listed as follows.
•We develop an index-free approach, known as the bi-directional
search with temporary stop, which significantly reduces the search
space and yields significant improvement over the basic solution.
• We propose an index-based approach, dubbed Sketch, that
has two major advantages over the baseline solutions: 1) faster
determination of whether there exists a satisfactory ρ-route, and
2) more efficient extraction of a ρ-route if it exists. We design the
sketch graph to capture the essence of G. The unique characteristic

of the sketch graph allows us to efficiently process ROAM queries.
There are two technical novelties of our approach. First, the
search leverages a projection theorem (Theorem 1), and hence the
processing of a ROAM query is transferred to the sketch graph,
in which the computation overhead is largely reduced. Second, an
optimized goal directed traversal is applied to further reduce the
search cost, which yields a more efficient extraction of a ρ-route
than existing approaches do.
• We analyze the complexities of the Sketch Graph based on a
notion called Cover Dimension (denoted by φ), which is shown to
be a small constant on real road networks. We further prove that
the space cost of the sketch graph is O(φ|V |) (i.e., near optimal)
and its construction is also efficient.
• We have conducted experiments on large real road network
graphs. On a graph about New York’s taxi trajectories, our al-
gorithm is up to 30 times faster than the baseline approach.

Organization. The rest of the paper is organized as follows.
Section 2 discusses the problem settings. Section 3 gives the
preliminaries. Section 4 presents two index free methods, Basic
and BIS, to handle the ROAM query. Section 5 presents the sketch
graph and Section 6 gives the ROAM query algorithm based
on sketch graph. Section 7 shows our experimental evaluation.
Section 8 discusses related works. Section 9 concludes the paper.
Section 10 gives all the proofs and additional pseudocode and
experiments.

2 THE ROAM QUERY

A road network is a graph G(V,E), where each node u ∈ V
represents a road junction and each edge e ∈ E is a road
segment. Each node u is associated with a geographical location
(ux, uy), while each edge e is associated with a weight w(e),
which indicates the cost of traversing e (e.g., the physical length
of e or the time required to traverse e). If e has two end nodes
u and v, we also use notation (u, v) to represent edge e. For any
path in G, we define its length as the sum of weights of the edges
in the path.

3

The shortest path between two nodes u and v, denoted as
u ; v, is the path from u to v with the smallest length.
Accordingly, the shortest distance between u and v, dist(u, v), is
the length of u; v. We denote the Euclidean distance between u
and v as distE(u, v). Unless otherwise specified, we refer to the
shortest distance between two nodes as their distance. For ease of
presentation, we assume that G is undirected. We will relax this
assumption in Section 6.2.

A path between s and t is called a ρ-route (ρ ≥ 0), if its length
is at most (1 + ρ) · dist(s, t). An area, denoted by circ(o, r), is a
circular region that is within a Euclidean distance r to a node o. A
path is said to intersect circ(o, r) if at least one node in the path
is in circ(o, r). We now define the ROAM query.

Definition 1 (The ROAM Query). Given two nodes s and t and
a circular region circ(o, r), a ROAM query returns a ρ-route
between s and t that intersects circ(o, r), or false if such ρ-route
does not exist.

In the subsequent discussions, we assume that nodes s and t
are both outside circ(o, r), as otherwise the case is trivial: the
shortest path s ; t is a ρ-route. Further, while our solutions are
adaptable to handle other service area shapes (see Section 6.2), a
circular service area is assumed as it is fairly natural in applica-
tions.

3 PRELIMINARIES

We review the Dijkstra’s algorithm (a.k.a. Dijkstra search) [7],
which is fundamental to the techniques we will present. Dijkstra
search computes the shortest distances from a source node s to all
the other nodes. During the search, the nodes are examined in an
ascending order of their distances from the source node s. Each
node is associated with a state and a distance that indicates the
shortest known distance from the node s. The state of a node is
one of unseen, labeled and scanned. If a node is unseen, it means
the distance associated with the node is∞. In contrast, if a node
is scanned, it indicates that the distance associated with the node
is the exact distance between s and the node. The other nodes with
state labeled are associated with a finite upper-bound distance of
its actual distance from s. Initially, the node s is set to state labeled
and associated with distance 0. After that, an iterative min-node
location and relaxation process is executed:

1) Locate min-node. Locate the node u associated with the
smallest distance dist(s, u); Change the state of node u as
scanned.

2) Relax edge. For edge (u, v) such that the label of v is not
scanned, update dist(s, v)← min(dist(s, v), dist(s, u)+
w(u, v)); Change the state of node v as labeled.

For ease of presentation, in the following, we say a node is
scanned (resp. labeled, unseen), if the state of the node is scanned
(resp. labeled, unseen). We also define the search space of Dijkstra
search as Dijkstra ball, formally defined as follows.

Definition 2 (Dijkstra Ball). A Dijkstra ball ball(s, τ) is the set
of nodes whose shortest distances to s are at most τ .

4 INDEX-FREE APPROACHES

In this section, we introduce index-free ROAM query algo-
rithms. Index-free algorithms avoid storing pre-computed indexes
in physical memory, making them suitable for applications that are

TABLE 1: Notations used in this paper.

Notation Description
G road network

u; v shortest path from u to v
(u, v) an edge between u and v

dist(u, v) shortest distance between u and v
distE(u, v) Euclidean distance between u and v

dis[u] associated distance of u during search
circ(o, r) a circle with center o and radius r
ball(u, τ) Dijkstra ball of u with raidus τ

gd grid distance
C3 (resp. C5) a 3× 3 (resp. 5× 5) sub-grid

B(u) bridge edges associated with node u
δ width of a grid cell

∆ maximal degree of a road network
n number of nodes in the road network

with stringent memory constraints. For example, when the ROAM
query is used in mobile applications, memory-saving algorithms
are preferred. However, choices of algorithmic designs are limited
if index-free property is required. Among them, the Dijkstra
algorithm or its variants are often the first that can be taken into
account.

4.1 Dijkstra Adapted Approach

An algorithm, called Basic, can be directly adapted from Dijk-
stra search to answer a ROAM query. To explain, observe that
every node u residing in a ρ-route must satisfy dist(s, u) ≤
(1+ρ)dist(s, t), based on the definition of the ρ-route. Similarly,
dist(t, u) ≤ (1 + ρ)dist(s, t). Hence, all the ρ-routes are within

I = ball
(
s, (1 + ρ)dist(s, t)

) ⋂
ball

(
t, (1 + ρ)dist(s, t)

)
(1)

Further, given s, t and an area circ(c, o), whether there exists
a ρ-route connecting s and t while passing through circ(o, r),
is equivalent to examining the existence of a node u residing in
circ(o, r) such that its sum of distances from s and t is at most
(1 + ρ)dist(s, t). We summarize the observation as follows.

Claim 1 (Positive Condition Rule). A ROAM query can return a
satisfactory ρ-route, if and only if there is a node u ∈ circ(o, r)
such that dist(s, u) + dist(t, u) ≤ (1 + ρ)dist(s, t).

Based on the Positive Condition Rule, a ROAM query can be
answered by performing the following two steps:

1) Forward search: Explore ball
(
s, (1 + ρ)dist(s, t)

)
;

2) Backward checking: Conduct Dijkstra search from node t,
whenever visit a node u satisfying the positive condition
rule, return (s; u) ∪ (u; t).

The above step (1) is due to the Equation 1, while step (2)
is conducted based on the positive condition rule. As an index-
free approach, Basic has incorporated strong prunings such as
bounding search radius, and this radius bound is tight. It is
therefore interesting to see further improvements under the index-
free requirement, as will be discussed shortly.

4.2 Bi-directional Search with Temporary Stop

We now present a better index-free algorithm. Observe that Basic
always fully explores the ball(s, (1 + ρ)dist(s, t)) in the first

4

s ts t s t

o

t

o

(a) (b) (c.1) (c.2)

s

sketch edge

sketch node

K1

K2

K3

n2 n3

2 3

(d)

original edge
 (length=1)

bisector

n1

Fig. 2: (a) The cases where simple bi-directional search is favorite, as the search space (black dashed) is small. (b) The cases where
simple bidirectional search is not favorite, as its search space (black dashed) is large. (c.1, c.2) Procedures of bidirectional search with
temporary stop. (d) Illustration of the sketch graph.

step, resulting in a high cost if dist(s, t) is large. This cost can
be reduced by introducing a bi-directional search (abbr. bi-search)
from s and t. The bi-search performs two Dijkstra searches, one
originates from s and another from t. The two Dijkstra searches
are executed concurrently in alternating lockstep fashion. The
motivating case in Figure 2 (a) explains why a bi-search is helpful.
In the figure, the given circle is close to the bisector of the line
segment connecting s and t, where the bisector refers to the line
that goes through the midpoint of the line segment connecting s
and t while being perpendicular to the line segment. Now, consider
that there is a bi-search that takes turns to expand the Dijkstra balls
from s and t. Once there is a node u ∈ circ(o, r) found inside the
two search balls, the search will stop if (s ; u) ∪ (u ; t) is a
ρ-route. Consequently, the search stops in a case where only small
portions of ball(s, (1+ρ)dist(s, t)) and ball(t, (1+ρ)dist(s, t))
have been explored (as shown in black dashed circles in Figure 2
(a)), resulting in a search cost that is in general smaller than fully
exploring ball(s, (1 + ρ)dist(s, t)).

While the aforementioned bi-search is more effective than
Basic, it is still not flexible enough to perform well in all cases
and we show that it is necessary to enhance it by considering
the location of circ(o, r). As shown in Figure 2 (b), circ(o, r)
is quite close to node s. In this case, the search still incurs a
large search space. To explain, in the case of Figure 2 (b) the
search will not stop unless a node u ∈ circ(o, r) inside the two
search balls has been found. At the time when such a node u
has been witnessed, however, the search balls are (almost) fully
explored (as shown by the black dashed circles), due to the fact
that circ(o, r) is near to s. This again results in a high cost.
To address this issue, we incorporate into the bi-search a more
reasonable strategy by considering the position of circle center o.
We still begin with two explorations from s and t. The difference
is, a temporarily stop of the search from one side would be issued
if the corresponding Dijkstra ball touches the circle center node
o. In the mean while, the search from the other side goes on. The
reason is that, when one-side search has visited o, it indicates
that an enough search has been done for this side. We name
this approach BIS (Bi-directional Iterative Search). A simplified
procedure is shown in Figure 2 (c.1) and (c.2). At first, a ball
centering at s temporarily stops its exploration when its boundary
touches o. Later, the exploration from the other side touches the
circle area and finds a node satisfying the positive condition rule
(Claim 1).

The following Lemma 1 allows us to further improve the
temporary stop based search. (The proofs of lemmas and theorems
in this paper can be found in Section 10.) Lemma 1 points out that
BIS can have a chance to stop when both balls from s and t have
scanned o.

Lemma 1. Denote the nearest node in circ(o, r) to s (resp. t) by
node us (resp. ut). When the circle center o is scanned in both
searches from s and t, the search can stop if

min
{
dist(t, o) + dist(s, us), dist(s, o)+dist(t, ut)

}
> (1 + ρ)dist(s, t).

Resumption of search. The conjunction of two temporary stops
may cause the resumption of searches, so as to avoid skipping
some candidate routes. Unless Lemma 1 is able to be applied,
there is no evidence that all the candidate routes have been
explored when the searches are suspended due to temporary
stops. To handle this, we apply resume-checking for those stopped
searches. The pesudocode of the BIS algorithm can be referred to
Algorithms 6, 7 in Section 10.

BIS outperforms Basic significantly, making it particularly in-
teresting for applications that are with stringent physical memory
constraints.

5 THE SKETCH FRAMEWORK

Previously, we have introduced index-free algorithms for ROAM
queries. As we mentioned, those algorithms are useful when
memory is precious. In this section, we focus on index-based
approaches, which are even more efficient than BIS, and would be
useful when the memory constraint is not the first consideration.
We present a general framework to facilitate the index-based
ROAM query, by looking at handling ROAM queries in a different
angle: can we project the query into a smaller graph, where query
processing becomes simpler? To this end, two questions have to
be answered: 1) how to extract such a smaller graph? 2) how
to project the query? These questions will be answered in the
following sections. In particular, we design a sketch graph (pre-
sented in this section) and propose the Sketch Search (presented in
Section 6) for handling a ROAM query based on the sketch graph.

5.1 Basic Idea of the Sketch Graph

The sketch graph aims to transfer the query processing to the
sketch graph dimension, for better efficiency. The high-level idea
resembles our behavior in looking up an online road network: we
often first browse an abstract level of the road network (a road
network sketch) to locate the most interesting area, then examine
the details of the interesting area by adjusting the resolution of
the network. Let us denote the sketch graph by S . The goal is to
preserve such a property: given a value ρ > 0, if there is a ρ-route
intersecting a given area circ(o, r) in the original network G, then
there must be a ρ-route intersecting a relevant area circ(o, r′)
in S . (How much larger r′ compared to r depends on the value

5

of r. The precise relationship between r′ and r will be given
in Theorem 1.) This property, interestingly, enables a projection
between S and G in ROAM query processing, as we will see
shortly in Section 6. Formally, we define a sketch graph of the
road network graph G as follows.

Definition 3 (Sketch Graph). Given a graph G(V,E), another
graph S(V ′, E′) is a Sketch Graph of G, if V ′ ⊂ V , and ∀u, v ∈
V ′, the shortest distance between u and v in S is equal to their
shortest distance in G. We refer to the nodes in V ′ as Sketch
Nodes, and the edges in E′ Sketch Edges.

This definition implies a distance invariant property, which
is crucial to the correctness of our querying algorithm in Sec-
tion 6. An example of sketch graph is shown in Figure 2 (d).
The bigger red nodes are sketch nodes, while the dashed lines
represent the sketch edges. For example, edge (K1,K2) shortcuts
path (K1, n1,K2) and is therefore associated with a weight 2.
(Suppose each edge in the original graph has a weight of 1.)

Next, we will present a detailed algorithm to construct a Sketch
Graph conforming to the definition.

5.2 Sketch Construction in Preparation
In this section, we introduce some concepts that are necessary to
understand our sketch graph construction algorithm.

As argued in [13], [15], [26], one important property of the
road network graph is: given a spatial range, say a square, the
relatively longer shortest paths in the range can be covered by a
small set of nodes, where a node set covers a shortest path implies
that the path passes through at least one of the nodes in the set.
Especially, the authors of [13], [15] show that, if one imposes the
road network with an M ×M grid (∀M ≥ 5), then the set of
shortest paths starting from certain grid cell C1 and ending at a
grid cell C2 that is at least 2 cells apart (horizontally or vertically)
fromC1, can be covered by a small number of nodes. For example,
Figure 3 (a) shows the shortest paths n1 ; n2 and n1 ; n3 that
are covered by node set {n4}. We summarize this observation by
a novel notion called cover dimension φ that is similar in spirit
to the arterial dimension in [15]. We alternatively propose the
cover dimension because it is more suitable for the analysis of our
algorithms. The following are the formal definitions.

Definition 4 (Grid Distance). Suppose we impose the road net-
work with an M ×M grid. Given a node u located at ith1 row
and jth1 column, and another node v located at ith2 -row and jth2
column. Then, the grid distance between u and v, gd(u, v), is
1 +max(|i1 − i2|, |j1 − j2|).

In Figure 3 (a), gd(n1, n2) = 4 because they are gapped by 4
cells (containing n1 and n2) horizontally.

Definition 5 (Inner Shell and Outer Shell [13]). For any grid cell
C , the 3 × 3 (resp. 5 × 5) rectangle centered at C is called the
inner shell (resp. outer shell) of grid cell C . For any node n0
inside cell C , its inner shell (resp. outer shell) is the inner shell
(resp. outer shell) of C .

For example, in Figure 3 (a), the dashed 3 × 3 rectangle
containing cell C1 is the inner shell of C1, and it is also the
inner shell of node n1. The 5× 5 rectangle centering at cell C1 is
the outer shell of cell C1, and it is also the outer shell of node n1.
In the following, we will use C3 to denote an inner shell, while
using C5 to denote an outer shell.

Definition 6 (Gi subgraph). The Gi subgraph of node u, denoted
by Gi(u), is the subgraph whose edges have at least one end node
in the i× i sub-grid centered at the cell containing node u.

Definition 7 (Cover Path). Given a 5 × 5 region centered at cell
C , we call a path a cover path if it is the shortest of the paths
satisfying 1) the path starts from inside the cell C and reaches
the outside of the outer shell of cell C; 2) the path has all nodes
(except the last one) locate within the 5× 5 region.

An example is shown in Figure 3 (a), the shortest path from
node n1 to node n2, which is colored green, starts inside of cell
C1 (the cell with blue boundary) and goes outside of the outer
shell of C1. Then, the shortest path is a cover path of cell C1.

Definition 8 (Transit Node and Transit Edge [13]). Given one
edge, denoted as (n0, n

′
0), cutting across the boundary of the

inner shell of C such that n0 is inside of the inner shell, if edge
(n0, n

′
0) exists in any cover path of cell C , then node n0 is called

a transit node of cell C . (n0, n
′
0) is called a transit edge.

As shown in Figure 3 (a), the node n4 is a transit node of cell
C1 since edge (n4, n5) cuts the boundary of the inner shell of
C1 and the edge lies in the cover path from node n1 to node n2.
(n4, n5) is the corresponding transit edge. Node n8 is not a transit
node as the path n1 ; n9 cannot reach outside of the outer shell.
Next, we introduce the concept of cover dimension.

Definition 9 (Cover Dimension). Suppose that we impose a
M × M grid on a road network, where M ≥ 5. Let φC be
the number of transit edges of a grid cell C . Then, the cover
dimension of road network G with respect to the M ×M grid is
φM = max{φC |C is a cell}. In addition, φ = max{φM |M ≥
5} is called the cover dimension of the road network.

Take M = 5 as an example. There are 25 cells in the grid
and therefore 25 corresponding numbers of transit edges. Then,
the maximal of the 25 numbers is the value of φ5. The cover
dimension φ is the maximal value after examining every M ≥ 5.

We adopt the assumption similar to [15] as follows, and this
assumption has been justified by experiments (see experiments in
Section 7.5).

Assumption 1. The cover dimension of a road network graph G,
φ, is a small constant.

5.3 The Construction of Sketch Graph

With the aforementioned definitions and assumptions, in this
section, we present the construction of the sketch graph. We
respectively discuss the selection of sketch nodes and creation
of sketch edges.

As hinted in [13], transit nodes are structurally important.
Therefore, the transit nodes are reasonably included as a subset
of sketch nodes. There are a few other nodes selected to be sketch
nodes as well. These additional nodes are important to guarantee
that the constructed sketch graph conforms to Definition 3, as can
be observed in our proof of Lemma 3. To be more specific, the
following strategy is employed:

Strategy 1 (Sketch Node Selection). 1) For a 5 × 5 sub-grid
whose center cell is C , the transit nodes with respect to the sub-
grid are selected as sketch nodes. 2) If one end node of a transit
edge locates within the cell C , then both end nodes of the transit
edge are selected to be sketch nodes.

6

n2

n1

C5

C3

C3 C5

n3

n4

n5

n6

n7 n8

n9

n10

n11

sketch node shortest path

n12 s1

n2

n1

s2

s3
n3

(a) (b)

n4

s4

sketch edge bridge edge

s2

s3

(c)

n4

s4

n5

C1

Fig. 3: (a) Examples of sketch graph, regional graph, cover paths. (b) Illustrating sketch edges. (c) Illustrating bridge edges.

A question followed by employing above selection strategy is
how to extract sketch nodes (in fact, mostly are transit nodes).
Let us focus on a specific 5× 5 sub-grid. Based on transit node’s
definition (Definition 8), a straightforward method is to conduct
Dijkstra searches from every node p in the central cell to explore
the cover paths sourced at p, and pinpoint the transit nodes in
those cover paths. This method, however, incurs as many runs
of Dijkstra searches as the number of nodes in the central cell,
which is often prohibitive. A better approach is to only conduct
Dijkstra searches from the nodes with an outgoing edge cutting
the boundary of the central cell. The rationale behind is that any
cover path of the central cell cuts its boundary. In particular, every
cover path must contain a subpath that starts with an edge cutting
the boundary of the central cell C , and ends at an edge cutting the
boundary of the outer shell1. For example, in Figure 3 (a), path
{n1, n4, n5, n2} is a such subpath of the cover path {n12, n1, n4,
n5, n2}. Hence, we only need to enumerate all such subpaths, as
illustrated by Algorithm 1.

Algorithm 1: SketchNodeSelect(G)
1 V ′ = ∅
2 for each 5× 5 sub-grid C5 do
3 Extract the subgraph G5 corresponding to C5;
4 for node p in central cell and p has an outgoing edge

intersecting the boundary of the central cell do
5 Conduct Dijkstra search from p in G5;
6 for each node q outside C5 that is visited by the

Dijkstra search do
7 Backtrack along the shortest path from node q to

node p and locate the transit edges;
8 for each transit edge (u, v) do
9 if u (resp. v) is in C3 then

10 V ′ = V ′ ∪ {u} (resp. V ′ = V ′ ∪ {v})
11 if u (resp. v) is in the central cell then
12 V ′ = V ′ ∪ {v} (resp. V ′ = V ′ ∪ {u})

13 return V ′

Example procedure of sketch node selection. Call back to
Figure 3 (a). The figure shows a regional graph (correspond-
ing to G5 in Algorithm 1). Edges (n1, n4) and (n1, n8) cut
across the boundary of cell C . The cover paths from n1 include

1If there exist multiple cuts of the boundary, then we select the subpath
with the shortest length.

{n1,n4, n5, n2}, {n1,n4, n6, n7, n3} and {n1, n8, n10, n11}.
The symbols in bold (i.e., n4 and n10) represent transit nodes,
which have an outgoing edge cutting the boundary of the inner
shell.

Now, it remains to construct the sketch edges. Recall that the
sketch graph is required to maintain the invariance of the shortest
distance between two sketch nodes (Definition 3). This motivates
us to do the following: we create sketch edges from a sketch node
to its nearest (measured in dist(·)) sketch nodes. Specifically,
we employ the following strategy and a pseudo-code is shown
in Algorithm 2.

Strategy 2 (Regional Sketch Edge Selection). For a sketch node
u which is located in cell C , link u to its nearest sketch nodes
within G5(u).

Algorithm 2: SketchEdgeCreate(G)
1 E′ = ∅
2 for each 5× 5 sub-grid C5 do
3 Extract the subgraph G5 corresponding to C5;
4 for each Sketch node u∗ in the central cell do
5 Conduct Dijkstra search from u∗ in G5;
6 for each leaf node q of the Dijkstra’s search tree do
7 Backtrack from node q to node u∗ along the

shortest path between them, and locate the u∗’s
nearest Sketch node v∗ in the path;

8 E′ = E′ ∪ {(u∗, v∗)};

9 return E′

Example procedure of sketch edge selection. Algorithm 2 shows
the procedure of sketch edge creation. As shown in Figure 3 (b),
S1 is a sketch node inside the central cell. Then, conduct Dijkstra
search from S1 (Algorithm 2 line 5). For each leaf node (n4 and
S3), backtrack the path to the source node S1. The backtracked
paths are {n4, S4,S2, n1, S1} and {S3, n3, n2, S1}. The bold
ones are sketch nodes nearest to S1 along the paths. Hence, we
link two sketch edges from S1 to its nearest sketch nodes, namely
S2 and S3 (Algorithm 2 lines 7-8).

The complexities of the algorithm are shown by the following
lemma.

Lemma 2. The construction time of the sketch graph is
O(∆ max{φn log n, n· max

C
{bC}· max

C
{log(nC)}}), where n

is the number of nodes in G, ∆ is the maximal degree of the road
network graph, bC is the number of edges cutting the boundary

7

of cell C and nC is the number of the nodes within cell C . In
addition, the storage cost of the sketch is O(min{M2φ2 , nφ}).

Remarks. In real road networks, ∆ is often a small constant.
(Recall that it represents the number of roads starting from a
junction.) Also practically, bC < n

M2 . (Note that the road network
is divided into M2 cells and bC only counts the nodes close to the
cell borders.) Therefore, the construction is practically efficient.
Meanwhile the storage is approximately linear, which is close to
optimal.

The following lemma gives that the constructed graph is
indeed a graph conforming to Definition 3.

Lemma 3. The constructed graph by Strategy 1 and Strategy 2 is
a sketch graph conforming to Definition 3.

6 THE SKETCH SEARCH

To leverage the sketch graph for a ROAM query, the basic idea
is to transfer querying workloads from the original graph to the
sketch graph. One issue is that, in ROAM query nodes s and t
may not be sketch nodes. We thus need to relate the non-sketch
nodes to sketch nodes. To this end, we introduce a set of bridge
edges, B(u), associated with each non-sketch node u. Intuitively,
we require the bridge edges in B(u) to connect node u to its
neighboring sketch nodes (Definition 10). The following Strategy
3 explains the bridge edge creation steps.

Definition 10 (Neighboring sketch nodes). A sketch node v is a
neighboring sketch node of node u, if all the intermediate nodes
inside the shortest path from u to v are not sketch nodes.

Strategy 3 (Bridge edge creation). For each non-sketch node u
which is located in cell C , we create bridge edges from node u to
its neighboring sketch nodes. The weight of the bridge edge is the
shortest distance between its two end nodes.

Example procedure of bridge edge construction. In Figure 3
(c), the bridge edges connect n5 to the transit nodes (namely,
S2, S3 in the example), forming the set of bridge edges B(n5) =
{(n5, S2), (n5, S3)}.

A problem followed is to construct bridge edges efficiently.
A naive approach is to run Dijkstra searches from each non-
sketch nodes to search their neighboring sketch nodes. However,
this approach runs n rounds of Dijkstra searches, which is rather
costly. A better approach is to run Dijkstra search reversely from
each of the transit nodes within the regional graphs. Since the
number of transit nodes is at most φ in each 5 × 5 region by
definition, we only need to run φ rounds of Dijkstra searches
within each G5 subgraph corresponding to the 5 × 5 region.
Interestingly, the total cost is only around pseudo-linear to the
number of nodes in G, as shown in the following lemma.

Lemma 4 (Bridge edge construction/storage). The time com-
plexity of bridge edge creation is O(∆φn log n) and the space
complexity of bridge edges is O((φ + ∆)n), where ∆ is the
maximal degree of G.

With the bridge edges of node s and node t, we introduce an
augmented sketch graph, called (s, t)-sketch graph (abbreviated
as (s, t)-sketch) to handle ROAM query with respect to node pair
(s, t). The (s, t)-sketch, composed of the sketch graph, B(s) and
B(t), gives us an interesting projection theorem that facilitates
efficient ROAM queries.

Theorem 1 (Sketch Projection Theorem). If gd(o, s) ≥ 5+dr/δe
and gd(o, t) ≥ 5 + dr/δe, then ROAM(s, t, o, r + 21.5δ, ρ)
returning false in (s, t)-sketch implies that ROAM(s, t, o, r, ρ)
returns false in G, where δ is the width of a grid cell, gd denotes
the grid distance and r is the radius of the given circular area.

The theorem allows to employ the sketch pruning strategy:
the search is first performed in the (s, t)-sketch, if ROAM(s, t,
o, r + 21.5δ, ρ) in the sketch returns false, then the original
ROAM query must return false. Given that the (s, t)-sketch
has a much smaller size compared with the original network G,
the pruning can be conducted efficiently. In addition, the most
interesting part of the theorem is that, the pruning is algorithm
independent. In other words, any possible ROAM query algorithm
M can be performed in sketch graph to prune. This forms a
general sketch search framework described in Algorithm 3.

Algorithm 3: SketchSearch(G, s, t, o, r, ρ)

1 exist← true;
2 get (s, t)-sketch from index;
3 if gd(o, s) ≥ 5 + dr/δe and gd(o, t) ≥ 5 + dr/δe then
4 exist←M(s, t, o, r+ 21.5δ, ρ) in (s, t)-sketch; /* M

is any approach to process ROAM
query. */

5 if exist = false then
6 return false ;

7 else
8 returnM(s, t, o, r, ρ) on G;

6.1 Optimization
This section presents an enhanced ROAM query method M,

with the help of the goal directed traversal. This method is
not an index-free method, as it requires pre-computation of the
distances between a selected set of sketch nodes. The structurally
important sketch nodes allow good distance estimations between
two nodes. With this observation, we pre-compute the shortest
distances between a set of selected sketch nodes (l1, . . . , lk)
and all the other nodes. By the triangle inequality, we have
dist(p, q) ≥ |dist(li, p)− dist(li, q)|. This gives us

dist(p, q) ≥ max
1≤i≤k

{|dist(li, p)− dist(li, q)|}, (2)

The above lower bound distance estimation (Equation 2) further
allows us to perform a goal directed search (like A? search [8]).
In what follows, we first revisit A? search, and then point out our
non-trivial results in handling ROAM query (Lemmas 5 and 6).

In contrast to the classical Dijkstra search, A? search advo-
cates that the search should be influenced by the location of t.
This strategy is referred to as the goal directed search, where the
goal refers to the target node t. Specifically the Dijkstra search
explores the node in an ascending order of the shortest distance
from the source node s. In contrast, A? search always explores the
node u with the current smallest value of dis[u]+ lower dist[u],
where dis[u] is the currently found distance of node u from the
source node s, and lower dist(u, t) is a lower bound distance
between node u and the target node t. As such, the search
towards the opposite directions (i.e., deviating faraway from t) is
reduced considerably. The search is stopped when t is scanned
by the search. A useful property is that, the only difference
between Dijkstra search and A? search is the procedure of the
edge relaxation (shown in Algorithm 4). Compared with the edge

8

relaxation of Dijkstra search, the differences lie in Lines 3 and 8,
where the value of dis[v] + lower dist[v] is set as the priority
value for the PriorityQueue Q.

Algorithm 4: Relax(u,v)
1 if state[v] = unseen then
2 dis[v]← dis[u] + w(u, v);
3 Q.push(v, dis[v] + lower dist(v, t));
4 state[v]← labeled;

5 if state[v] = labeled then
6 if dis[v] < dis[u] + w(u, v) then
7 dis[v]← dis[u] + w(u, v);
8 Q.decreaseKey(v, dis[v] + lower dist(v, t)));

If we extend the aforementioned A? searching algorithm for
ROAM query, the search stopping criterion will be too conserva-
tive. We give the following new stop criterion for handling ROAM
query using A? search.

Lemma 5 (Stop rule). When the visiting node u has dis[u]
+lower dist(u, t) > (1 + ρ)dist(s, t) where dis[u] is the
distance associated with u during the search, then each node of
any ρ-route has been scanned.

We also show that the positive condition rule (Claim 1) is still
applicable here, by the following Lemma.

Lemma 6. Positive condition rule (Claim 1) holds in this goal
directed search, if the employed estimation method lower dist
is monotone, i.e., ∀ edge (u, v) ∈ E, lower dist(u, t) ≤
w(u, v) + lower dist(v, t). Further, the lower dist computed
by Equation 2 is monotone.

In order to apply the positive condition rule (Claim 1) indi-
cated by Lemma 6, we employ a consecutive two runs of the
goal directed searches respectively from s and t. As shown in
Algorithm 5, a goal directed search first starts from s, with a
stopping condition in Lemma 5 applied. After that, a checking
from t is initiated, with the aim of extracting a ρ-route with the
positive condition rule in Lemma 6.

6.2 Extensions and Discussions

Directed road networks. There are two directed edges (u, v)
and (v, u) in a directed road network, such that the weights of
(u, v) and (v, u) can be different. The adaptation relies on two
kinds of Dijkstra’s searches, i.e., forward Dijkstra’s search and
backward Dijkstra’s search. The forward Dijkstra’s search only
explores each edge (u, v) when node u is visited, while the
backward Dijkstra’s search only explores each edge (v, u) when
node u is visited. Based on these two concepts, we conveniently
adapt the ROAM query algorithms to directed road networks. For
instance, in Basic, we use forward Dijkstra’s search for node s
and backward Dijkstra’s search for node t. Then, during the step
of Checking from t, for each visited node u, d(s, u) + d(u, t)
(instead of d(s, u)+d(t, u)) is computed. Following this idea, we
further demonstrate the adaptation needed for the construction of
S . Similarly, for the Sketch based method, we create both forward
Sketch edges and backward Sketch edges, which are respectively
created by conducting forward Dijkstra’s search and backward
Dijkstra’s search. As such, all the lemmas still hold, with slight
modification to involve the backward Sketch edges.

Algorithm 5: GoalDirectedSearch(G, s, t, o, r, ρ)
1 diss[s]← 0, dist[t]← 0;
2 stdis =∞;
3 while some node has not been visited from the search of s do
4 compute lower dist(u, t) by Equation 2;
5 u← argminu{diss[u] + lower dist(u, t)};
6 if u = t then
7 stdis← diss[u];

8 if diss[u] + lower dist(u, t) > (1 + ρ)stdis then
9 Break;

10 for neighbor v of u do
11 Relax (u, v) by Algorithm 4;

12 while some node has not been visited from the search of t do
13 compute lower dist(u, s) by Equation 2;
14 u← argminu{dist[u] + lower dist(u, s)};
15 if diss[u] + dist[u] ≤ (1 + ρ)stdis then
16 return (s; u) ∪ (u; t);

17 if dist[u] + lower dist(u, s) > (1 + ρ)stdis then
18 return false;
19 for neighbor v of u do
20 Relax (u, v) by Algorithm 4;

21 return false;

Non-circular areas. For a non-circular area A, the sketch graph
based pruning can still be used, with slight modification of The-
orm 1. In particular, we can find a circle that covers A, regardless
of whether A is a circle or not. For instance, we can first extract a
circle C, with a radius r and central node o, that covers A. Then
Theorm 1 can still be applied.

Dynamic road networks. A dynamic road network refers to a
road network whose edge weights are gradually changing. When
the weight of an edge (u, v) changes, the sketch graph can be
updated locally and thus efficiently. In fact, only a small number
of C5 sub-grids, which contain u or v, would be affected. In
particular, there are at most 50 such sub-grids as u (or v) is
contained by at most 5× 5 = 25 sub-grids. Thus, we can simply
recompute the sketch edges originated from these sub-grids for an
edge weight update.

7 EXPERIMENTS

In this section, we demonstrate a systematic experimental study on
the proposed methods, in terms of efficiency (Section 7.2), index
cost (Section 7.3) and effectiveness (Section 7.4).

TABLE 2: Datasets
ID Road network #Edges #Nodes Query set
D1 New York (NY) 733,846 264,346 Green cab
D2 New York (NY) 733,846 264,346 Yellow cab
D3 Florida (FLA) 2,712,798 1,070,376 POI sets
D4 Northeast (NE) 3,897,636 1,524,453 Random
D5 Great Lakes (LK) 6,885,658 2,758,119 Random
D6 Western (WU) 15,248,146 6,262,104 Random
D7 Full USA (FU) 58,333,344 23,947,347 Random

7.1 Setup
The evaluation is conducted on 7 real and public datasets (Table 2,
downloaded from website 2). The query set for D1 (resp. D2)
uses the green (resp. yellow) cab trajectory record in Jan 2015 3.
Green cabs have restricted pick-up areas compared with Yellow

2http://www.dis.uniroma1.it/challenge9/download.shtml
3http://www.nyc.gov/html/tlc/html/about/trip record data.shtml

http://www.dis.uniroma1.it/challenge9/download.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

9

cabs, and therefore green caps and yellow cabs are divided into
two datasets. The (pick-up, drop-off) locations are set to be the
(s, t) pairs, and the areas are generated uniformly. For D3, 60
POIs are extracted from the Florida road network. The origin s,
destination t and the area center o are randomly selected from
the POI set. Datasets D4 to D7 are used to test the scalability of
the approaches. To our knowledge, D7 (full USA) is one of the
biggest road networks published. Experiments are conducted on
an Intel i7-4870HQ 2.5GHz CPU with 16GB RAM running Mac
OS X (10.10.4). The three methods proposed in this paper, namely
Basic, BIS, and Sketch, are compared, in terms of the efficiency,
index sizes and indexing time. The value of ρ is selected within a
range of [0.1 − 0.9], which means that a ρ-route does not stretch
up to double of the exact shortest path. Unless otherwise specified,
the running time reported is the average of running times of 400
queries in each setting; the grid resolution for Sketch is 100×100;
the deviation ρ is set to 0.5.

7.2 Efficiency

Figures 4∼5 show the efficiency comparisons among the 3 ap-
proaches with various parameter settings.

Sketch consistently performs the best in efficiency, followed
by BIS, and then Basic. For D1 and D2, in particular, Sketch
is up to 30 times faster than Basic (See Figures 4(a.1-a.3) and
(b.1-b.3)). The superior performance of Sketch is two-fold. First, it
owes to the efficient query processing on the smaller sketch graph.
As shown in Table 3, the size of sketch graph is much smaller
compared with the original network, and therefore processing
ROAM query on sketch graph is much faster. Second, the goal
directed search takes effect, and often this leads to a smaller search
space compared with Basic.

Interestingly, the performance improvement of Sketch is rela-
tively stable, regardless of what parameters are set. As shown in
Figure 4, changes of ρ only slightly affect the running time of
Sketch. In contrast, the performances of Basic and BIS are more
sensitive to ρ. This owes to the fact that Sketch has a smaller search
space than Basic and BIS, as the search is goal directed. Such an
optimized search tends to be less sensitive to the changes of ρ.

To study the effect of area sizes, we perform queries with area
radius in [0, 50L], where L is the average edge length. In Basic
and BIS, the search periphery touches the area earlier if the area
is larger, and this typically means earlier stops of searches. As a
result, the running times drop slightly with the increase the area
sizes (see Figure 4 (a.4) (b.4) and (c.4)). Such changes have slight
effects on Sketch since it is already largely optimized.

Furthermore, Sketch is scalable to large road networks and
consistently outperforms the competitors by around one order of
magnitude (see Figure 5).

Grid resolution study. How to determine a reasonable grid
resolution is an interesting question. Here we give an experimental
analysis. Figure 6 (a) shows the results of our tests on dataset D2,
for which we vary the resolution from 10 × 10 to 640 × 640.
The results demonstrate that, for D2, the resolution 80 × 80
(corresponding to the valley of the curve) achieves the best
performance. Similar results are observed on dataset D3, as shown
in Figure 6 (b). Such “valley curves” are formed for the following
reasons: When the grid is finer, more nodes will be selected as
Sketch nodes, and therefore the size of the sketch graph S will
become larger. As a result, there are two contradictory effects:
1) performance worsen: executing queries on S becomes slower

since the size of S is larger; 2) performance enhanced: more
queries will satisfy the pruning condition in Theorem 1 (line 3
in Algorithm 3), and those queries enjoy faster processing. When
the grid resolutions are smaller (i.e., the grids are coarser), the
latter effect dominates, and the performance improves; As the
resolution increases, the former effect starts to dominate, and the
performance becomes worse. In practice, since the road network
structure and historical query sets are typically available, and
therefore this data can be used to study the “valley curve” and
determine a reasonable resolution.

1 0 2 0 4 0 8 0 1 6 0 3 2 0 6 4 00
2
4
6
8

tim
e (

ms
)

g r i d r e s o l u t i o n

 (ρ= 0 . 1)
 (ρ= 0 . 9)

1 0 2 0 4 0 8 0 1 6 0 3 2 0 6 4 00
5 0

1 0 0
1 5 0
2 0 0

tim
e (

ms
)

g r i d r e s o l u t i o n

 (ρ= 0 . 1)
 (ρ= 0 . 9)

(a) D2 (b) D3
Fig. 6: (Performance V.S. grid resolution) Performance first im-
proved and then degraded with the increase of the grid resolution.

7.3 Index Cost
Table 3 shows the index size and indexing time for Sketch. The
grid resolution is set to 100 × 100. Naturally, the construction
time increases with the size of road networks. For moderate sized
datasets (up to millions of edges) such as NY, FLA, NE and LKS,
the index construction is finished within a few minutes. For larger
datasets (up to tens of millions of edges) such as WU and USA,
the construction is finished within a few hours. The space costs
are moderate compared with the input sizes. The sizes range from
3.1 to 12.3 times that of input size (i.e., original graph size). This
agrees with our theory that the space cost is linear to the input size
(see Lemma 2). Table 4 shows the index construction time and
space cost when using different grid resolutions. The size of the
sketch graph increases when the grid resolution becomes higher
(from 20×20 to 100×100). The reason is, when the grid is finer,
the more sketch nodes are selected and hence the larger of the
sketch graph size. The number of the bridge edges is not sensitive
to the changes of the grid size.

TABLE 3: Index size and indexing time (M=103KB, G=103MB).

Sketch
Dataset Input Graph Size Time Sketch Bridge-edges

|E|
NY (D1, D2) 22.1M 1.9mins 4.2M 6.7

FLA (D3) 86.6M 8.1mins 1.3M 3.1
NE (D4) 126.9M 8.3mins 3.5M 8.6

LKS (D5) 232.2M 13.0mins 3.1M 9.4
WU (D6) 534.6M 55.0mins 7.3M 12.3
FU (D7) 2.1G 4.5hours 4.2M 6.1

TABLE 4: Index size and indexing time w.r.t. grid sizes.

Dataset Grid Time Sketch Bridge-edges/|E|

FLA (D3)

20× 20 596s 0.1M 3.3
40× 40 563s 0.3M 3.3
60× 60 549s 0.6M 3.3
80× 80 505s 0.9M 3.2

100× 100 487s 1.3M 3.1

Sketch graph update. As discussed in Section 6.2, at most 50
sub-grids (of size 5 × 5) need to be updated when an edge

10

0 . 1 0 . 3 0 . 5 0 . 7 0 . 90
5

1 0
1 5
2 0

tim
e (

ms
)

d e v i a t i o n ρ

 B a s i c
 B I S
 S k e t c h

0 . 1 0 . 3 0 . 5 0 . 7 0 . 90
5

1 0
1 5
2 0

tim
e (

ms
)

d e v i a t i o n ρ

 B a s i c
 B I S
 S k e t c h

0 . 1 0 . 3 0 . 5 0 . 7 0 . 90
1
2
3
4

tim
e (

ms
)

d e v i a t i o n ρ

 g r i d 2 0
 g r i d 4 0
 g r i d 6 0
 g r i d 8 0
 g r i d 1 0 0

0 1 0 2 0 3 0 4 0 5 00
5

1 0
1 5
2 0

tim
e (

ms
)

r a d i u s / a v g e d g e l e n g t h

 B a s i c
 B I S
 S k e t c h

(a.1) D1 (grid=20) (a.2) D1 (grid=100) (a.3) D1 (vary grid) (a.4) D1 (vary area)

0 . 1 0 . 3 0 . 5 0 . 7 0 . 90
1 0
2 0
3 0
4 0

tim
e (

ms
)

d e v i a t i o n ρ

 B a s i c
 B I S
 S k e t c h

0 . 1 0 . 3 0 . 5 0 . 7 0 . 90
1 0
2 0
3 0
4 0

tim
e (

ms
)

d e v i a t i o n ρ

 B a s i c
 B I S
 S k e t c h

0 . 1 0 . 3 0 . 5 0 . 7 0 . 90
1
2
3
4

tim
e (

ms
)

d e v i a t i o n ρ

 g r i d 2 0
 g r i d 4 0
 g r i d 6 0
 g r i d 8 0
 g r i d 1 0 0

0 1 0 2 0 3 0 4 0 5 00
1 0
2 0
3 0
4 0

tim
e (

ms
)

r a d i u s / a v g e d g e l e n g t h

 B a s i c
 B I S
 S k e t c h

(b.1) D2 (grid=20) (b.2) D2 (grid=100) (b.3) D2 (vary grid) (b.4) D2 (vary area)

0 . 1 0 . 3 0 . 5 0 . 7 0 . 90
1 0 0
2 0 0
3 0 0
4 0 0

tim
e (

ms
)

d e v i a t i o n ρ

 B a s i c
 B I S
 S k e t c h

0 . 1 0 . 3 0 . 5 0 . 7 0 . 90
1 0 0
2 0 0
3 0 0
4 0 0

tim
e (

ms
)

d e v i a t i o n ρ

 B a s i c
 B I S
 S k e t c h

0 . 1 0 . 3 0 . 5 0 . 7 0 . 90
5 0

1 0 0
1 5 0
2 0 0

tim
e (

ms
)

d e v i a t i o n ρ

 g r i d 2 0
 g r i d 4 0
 g r i d 6 0
 g r i d 8 0
 g r i d 1 0 0

0 1 0 2 0 3 0 4 0 5 00
1 0 0
2 0 0
3 0 0
4 0 0

tim
e (

ms
)

r a d i u s / a v g e d g e l e n g t h

 B a s i c
 B I S
 S k e t c h

(c.1) D3 (grid=20) (c.2) D3 (grid=100) (c.3) D3 (vary grid) (c.4) D3 (vary area)
Fig. 4: (Performance V.S. ρ & radius) Sketch is the best performing method on practical query datasets D1, D2 and D3.

0 . 1 0 . 3 0 . 5 0 . 7 0 . 90

1 5 0

3 0 0

4 5 0

6 0 0

tim
e (

ms
)

d e v i a t i o n ρ

 B a s i c
 B I S
 S k e t c h

0 . 1 0 . 3 0 . 5 0 . 7 0 . 90

3 0 0

6 0 0

9 0 0

1 2 0 0

tim
e (

ms
)

d e v i a t i o n ρ

 B a s i c
 B I S
 S k e t c h

0 . 1 0 . 3 0 . 5 0 . 7 0 . 90

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

tim
e (

ms
)

d e v i a t i o n ρ

 B a s i c
 B I S
 S k e t c h

0 . 1 0 . 3 0 . 5 0 . 7 0 . 90

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

tim
e (

ms
)

d e v i a t i o n ρ

 B a s i c
 B I S
 S k e t c h

(a) D4 (b) D5 (c) D6 (d) D7
Fig. 5: (Performance V.S. ρ) Sketch performs the best on large road networks (D4-D7).

changes its weight. The can be done very efficiently. For moderate
sized city-scale road network like NY, it only takes expected
0.6 seconds to conduct an update; for road network for large
cities such as FLA, it takes around 2.4 seconds for an update.
Considering that the changes of road networks traffics are typically
not instantaneous, the update efficiency well suits practical needs.

7.4 Effectiveness

As we mentioned, using an area to model a service is necessary
in many routing applications. An experiment is further conducted
to show that modeling services using areas makes a difference.
To explain, we conduct experiments to simulate a scenario of
selecting one moving object to handle the service: there are c
moving objects (e.g., taxis) with known destinations, and 100
servicing areas (e.g., 100 querying passengers) are distributed on
the road network. For an area, it is regarded as served if there is
at least one objects that can follow a ρ-route passing through its
servicing area (e.g., at least one taxis can serve the passenger with
a small detour cost). The moving objects ((s, t) pairs) are drawn
from dataset D1. ρ is in [0, 0.2] and the 100 moving objects
have identical ρ values. If there are p areas that can be served,
we say the servicing rate is p%. We compare the serving rate of

area-modeling and point-modeling. The results for c = 500 and
c = 5000 are shown in Figure 7 (a) and (b). The impact of area
radius is significant on servicing rate (note that radius=0 indicates
the service is modeled as an exact point). When ρ is close to 0, the
servicing rate increases from 3% (radius= 0) to 21% (radius/unit-
radius= 4) for the case of 500 objects, and increases from 12%
to 53% for the case of 5000 objects. The result explains there
can be deficiencies of the point-modeling for a service in routing
applications: when a service in practice is an area, simplifying it
to an exact point often reduces its possibility to be served, in a
routing application where detour cost is a major concern.

7.5 Experiments on Cover Dimension

We experimentally estimate the cover dimension. We impose a
grid with resolution 2r+2 × 2r+2, where r ranges in [1, 10]. That
is, the grid resolution ranges from 8×8 to 4096×4096. With each
grid imposed, we count the number of transit edges within every
5×5 sub-grid. We figure out the maximal number and the average
number of transit edges for all our test datasets. The results are
shown in Figure 8. The x-axis is the resolution parameter r and
“MAX” (resp. “AVG”) is the maximal (resp. average) number of
transit edges within each 5× 5 sub-grid. All the results show that

11

3
1 3 1 6 1 9 2 12 1 2 4 2 5 2 7 2 8

0 1 2 3 40
2 0
4 0
6 0
8 0

1 0 0
se

rvi
cin

g r
ate

 %

r a d i u s / u n i t - r a d i u s

 ρ= 0
 ρ= 0 . 2

1 2

3 5
4 3 4 8 5 35 3 5 6

6 3 6 5
7 2

0 1 2 3 40
2 0
4 0
6 0
8 0

1 0 0

se
rvi

cin
g r

ate
 %

r a d i u s / u n i t - r a d i u s

 ρ= 0
 ρ= 0 . 2

(a) D1 (500 objects) (b) D1 (5000 objects)

Fig. 7: (Servicing rate V.S. radius) Larger areas bring in higher
servicing rates. One unit-radius = 5L.

1 2 3 4 5 6 7 8 9 1 00
2 0
4 0
6 0
8 0

1 0 0

nu
mb

er
of

co
ve

r e
dg

es

g r i d r e s o l u t i o n r

 M A X
 A V G

1 2 3 4 5 6 7 8 9 1 00
2 0
4 0
6 0
8 0

1 0 0

nu
mb

er
of

co
ve

r e
dg

es

g r i d r e s o l u t i o n r

 M A X
 A V G

NY (D1,D2) FLA (D3)

1 2 3 4 5 6 7 8 9 1 00
2 0
4 0
6 0
8 0

1 0 0

nu
mb

er
of

co
ve

r e
dg

es

g r i d r e s o l u t i o n r

 M A X
 A V G

1 2 3 4 5 6 7 8 9 1 00
2 0
4 0
6 0
8 0

1 0 0

nu
mb

er
of

co
ve

r e
dg

es

g r i d r e s o l u t i o n r

 M A X
 A V G

NE (D4) LKS (D5)

1 2 3 4 5 6 7 8 9 1 00
2 0
4 0
6 0
8 0

1 0 0

nu
mb

er
of

co
ve

r e
dg

es

g r i d r e s o l u t i o n r

 M A X
 A V G

1 2 3 4 5 6 7 8 9 1 00
2 0
4 0
6 0
8 0

1 0 0

nu
mb

er
of

co
ve

r e
dg

es

g r i d r e s o l u t i o n r

 M A X
 A V G

WU (D6) FU (D7)

Fig. 8: (Transit edges V.S. grid resolution 2r+1×2r+1) Illustrating
small cover dimension.

in practical settings, the number of transit edges is bounded by a
relatively small constant.

8 RELATED WORK

Related algorithms. The shortest path query [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19] is related to
the ROAM query, because the ρ-route is an approximate short-
est path. However, extending these solutions to handle ROAM
queries is not straightforward, due to the presence of ρ and area.
For example, the algorithms [10], [11], [12] exploit a spatial
coherent property that, two shortest paths with close origins and
destinations typically share many edges. However, this spatial
coherent property is invalid for the ρ-routes, because there can
be two ρ-routes with close origins and destinations, but do not
share any intermediate nodes. Our algorithms are also related to
the hierarchical shortest path algorithms [13]. Particularly, sketch
graph is built upon transit nodes [13]. Nevertheless, the key idea
of the Sketch Graph is significantly different from that of [13].

The Sketch Graph connects the transit nodes which are closely
located, rather than storing (almost) pairwise distances between
transit nodes as in [13]. Using Sketch Graphs thus significantly
reduces the space cost. Meanwhile, leveraging the sketch graph
to answer a ROAM query is a unique problem of this paper and
therefore new.

Related applications. Taxi-sharing systems have been studied
recently [20], [22], [23], [24]. Some of them consider a detour
constraint similar to the ROAM query within a shared ride, but
simply employ less efficient shortest path based algorithms for
detour constraint checking, compared with the Sketch method
(referred to our additional experiments in Section 10). While in
these systems more constraints such as time threshold may be
considered for route selection, the constraint for the detour cost
(as in ROAM query) is typically of a higher priority and acts as an
independent pruning for routes. This proves the fundamentality of
ROAM queries and the significance of evaluating them efficiently.

Existing spatial crowdsourcing studies [3], [4], [5], [6], [27],
[28] often compute the spatial distance based on Euclidean
distance. Euclidean distance, as pointed out in [10], is often
inaccurate, since an object’s movement is constrained by a road
network. Hence, the aforementioned existing algorithms are not
applicable to answer a ROAM query.

Besides, the existing studies for above applications rarely
consider area based queries, and POIs are assumed to be exact
points. However, as we pointed out in Section 1, services can be
covered by an area (e.g., task area in crowd-sourcing). Extending
existing point-based algorithms to handle area-based problems is
often not simple, and a sophisticated adaptation of the existing
algorithms may be required to handle a ROAM query.

Road network dimensions. The dimension models for road
networks have been discussed [15], [26]. The highway dimen-
sion [26] states that there exists a small set S of nodes, such
that any shortest path connecting two distant nodes must contain
some nodes in S. While it is elegant in theoretical sense, the
empirical results for the highway dimension is missing. Arterial
dimension [15] describes a similar dimension to highway dimen-
sion based on grid partitions of the road network. It uses a 4 × 4
sub-grid (instead of 5×5 sub-grid in cover dimension) and counts
the number of edges needed to cover all paths from one side of the
window to its opposite side. The cover dimension we have adopted
is similar in spirit to the arterial dimension. Cover dimension
is introduced in this paper because it simplifies our theoretical
analysis.

9 CONCLUSIONS

Providing service recommendation in location-based services has
become an important topic. In this paper, we propose the ROAM
query, which can be used to determine whether a service can be
recommended to a object moving on a road network. We develop
efficient algorithms and data structures for this query, and validate
its efficiency and effectiveness on large real road network datasets.

ACKNOWLEDGMENTS
Reynold Cheng was supported by the Research Grants Council
of Hong Kong (RGC Projects HKU 17229116, 106150091, and
17205115) the University of Hong Kong (Projects 104004572,
102009508, and 104004129), and the Innovation and Technology
Commission of Hong Kong (ITF project MRP/029/18). Ben Kao
was supported by Hong Kong University Grant Council grants

12

17253616 and 17254016. Shuigeng Zhou was partially supported
by National Natural Science Foundation of China under grant No.
U1636205.

REFERENCES

[1] “http://www.rydesharing.com/sg/home/.”
[2] “https://play.google.com/store/apps/details?id=com.sdu.didi.psnger.”
[3] L. Kazemi and C. Shahabi, “Geocrowd: enabling query answering with

spatial crowdsourcing,” in GIS, 2012, pp. 189–198.
[4] P. Cheng, X. Lian, Z. Chen, R. Fu, L. Chen, J. Han, and J. Zhao, “Reliable

diversity-based spatial crowdsourcing by moving workers,” VLDB, vol. 8,
no. 10, pp. 1022–1033, 2015.

[5] H. Yu, C. Miao, Z. Shen, and C. Leung, “Quality and budget aware task
allocation for spatial crowdsourcing,” in ICAAMS, 2015, pp. 1689–1690.

[6] Z. Chen, R. Fu, Z. Zhao, Z. Liu, L. Xia, L. Chen, P. Cheng, C. C. Cao,
Y. Tong, and C. J. Zhang, “gmission: A general spatial crowdsourcing
platform,” VLDB, vol. 7, no. 13, pp. 1629–1632, 2014.

[7] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[8] A. V. Goldberg and C. Harrelson, “Computing the shortest path: A search
meets graph theory,” in SODA, 2005, pp. 156–165.

[9] M. Hilger, E. Köhler, R. H. Möhring, and H. Schilling, “Fast point-
to-point shortest path computations with arc-flags,” Ninth DIMACS
Implementation Challenge, vol. 74, pp. 41–72, 2009.

[10] H. Samet, J. Sankaranarayanan, and H. Alborzi, “Scalable network
distance browsing in spatial databases,” in SIGMOD, 2008, pp. 43–54.

[11] J. Sankaranarayanan, H. Alborzi, and H. Samet, “Efficient query process-
ing on spatial networks,” in ACM workshop on GIS, 2005, pp. 200–209.

[12] J. Sankaranarayanan, H. Samet, and H. Alborzi, “Path oracles for spatial
networks,” VLDB, vol. 2, no. 1, pp. 1210–1221, 2009.

[13] H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes, “In transit
to constant time shortest-path queries in road networks.” in ALENEX,
2007.

[14] P. Sanders and D. Schultes, “Highway hierarchies hasten exact shortest
path queries,” in Algorithms–Esa 2005. Springer, 2005, pp. 568–579.

[15] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou, “Shortest
path and distance queries on road networks: towards bridging theory and
practice,” in SIGMOD, 2013, pp. 857–868.

[16] R. Geisberger, P. Sanders, D. Schultes, and D. Delling, “Contraction
hierarchies: Faster and simpler hierarchical routing in road networks,” in
Experimental Algorithms. Springer, 2008, pp. 319–333.

[17] A. D. Zhu, W. Lin, S. Wang, and X. Xiao, “Reachability queries on
large dynamic graphs: a total order approach,” in SIGMOD, 2014, pp.
1323–1334.

[18] B. Ding, J. X. Yu, and L. Qin, “Finding time-dependent shortest paths
over large graphs,” in EDBT, 2008, pp. 205–216.

[19] S. Wang, W. Lin, Y. Yang, X. Xiao, and S. Zhou, “Efficient route planning
on public transportation networks: A labelling approach,” in SIGMOD,
2015, pp. 967–982.

[20] S. Ma, Y. Zheng, and O. Wolfson, “Real-time city-scale taxi ridesharing,”
TKDE, vol. 27, no. 7, pp. 1782–1795, 2015.

[21] ——, “T-share: A large-scale dynamic taxi ridesharing service,” in ICDE,
2013, pp. 410–421.

[22] B. Cao, L. Alarabi, M. F. Mokbel, and A. Basalamah, “Sharek: A scalable
dynamic ride sharing system,” in MDM, vol. 1, 2015, pp. 4–13.

[23] B. Shen, Y. Huang, and Y. Zhao, “Dynamic ridesharing,” SIGSPATIAL
Special, vol. 7, no. 3, pp. 3–10, 2016.

[24] Y. Huang, F. Bastani, R. Jin, and X. S. Wang, “Large scale real-time
ridesharing with service guarantee on road networks,” VLDB, vol. 7,
no. 14, pp. 2017–2028, 2014.

[25] P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias, “Preventing
location-based identity inference in anonymous spatial queries,” TKDE,
vol. 19, no. 12, pp. 1719–1733, 2007.

[26] I. Abraham, A. Fiat, A. V. Goldberg, and R. F. Werneck, “Highway
dimension, shortest paths, and provably efficient algorithms,” in SODA,
2010, pp. 782–793.

[27] H. To, G. Ghinita, and C. Shahabi, “A framework for protecting worker
location privacy in spatial crowdsourcing,” VLDB, vol. 7, no. 10, pp.
919–930, 2014.

[28] L. Kazemi, C. Shahabi, and L. Chen, “Geotrucrowd: trustworthy query
answering with spatial crowdsourcing,” in GIS, 2013, pp. 314–323.

10 PROOFS, CODES, ADDITIONAL EXPERIMENTS
Proof sketch of Lemma 1.
Proof. We show that when the condition in the lemma is met,
all intersecting nodes between circ(o, r) and a ρ-route have been

Algorithm 6: Resume_Check(p)
1 if p is s (resp. t) then
2 q ← t (resp. s);

3 if search from q is stopped then
4 return true

5 else
6 return false;

Algorithm 7: BIS(G, s, t, o, r, ρ)
1 best dist←∞
2 temp stops ← false; temp stopt ← false;
/* indicators of temporary stops */

3 radi stops ← false; radi stopt ← false ;
/* indicators of the radius stops, i.e.,

whether the search radiuses exceeding
(1 + ρ)dist(s, t). */

4 for v ∈ V do
5 diss[v]← 0, dist[v]← 0

6 while true do
7 gos=temp stops is false and radi stops is false;
8 got=temp stopt is false and radi stopt is false;
9 if gos then

10 u← next visit node by Dijkstra(s);
11 best dist← min{best dist, diss[u] + dist[u]};
12 if u = o then
13 temp stops ← true;

14 if diss[u] > (1 + ρ)best dist then
15 radi stops ← true;

16 if u ∈ circ(o, r) and
diss[u] + dist[u] ≤ (1 + ρ)best dist;
/* Positive condition rule */

17 then
18 return (s; u) ∪ (u; t);

19 if the condition in Lemma 1 holds then
20 return false;

21 if got then
/* Do the same by switching s and t

*/
22 if gos is false and got is false then
23 if temp stops and resume check(s) then
24 temp stops ← true

25 if temp stopt and resume check(t) then
26 temp stopt ← true

27 update gos and got

28 if gos is false and got is false then
29 Break;

30 return false;

scanned by both searches, and therefore it is safe to stop searching.
We assume by contradiction that there is a node u∗ which has at
least not been scanned by the search from one side (say, the search
from s). Then, we consider following two cases.
Case (i): If u∗ has also not been scanned by the search from t.
Then, we have dist(s, u∗) + dist(t, u∗) ≥ dist(s, o) +
dist(t, o) ≥ dist(s, us) + dist(t, o) > (1 + ρ)dist(s, t),
implying that u∗ is not in a ρ-route, violating to the assumption.
Case (ii): If u∗ has only been scanned by the search from t.
In this case, dist(s, u∗) +dist(t, u∗) ≥ dist(s, o) + dist(t, u∗)
≥ dist(s, o) + dist(t, ut) > (1 + ρ)dist(s, t), implying that u∗

is not in a ρ-route, and violation ensues.

http://www.rydesharing.com/sg/home/
https://play.google.com/store/apps/details?id=com.sdu.didi.psnger

13

Proof sketch of Lemma 2.
Proof. Sketch node selection time. Consider sketch node selec-
tion in a regional graph of cell C . There are at most bC
boundary nodes cutting the boundary of cell C . Let n′C be the
number of nodes within 5 × 5 sub-grid centered at cell C .
Then, the sketch node selection consumes O(∆bCn

′
C log(n′C))

time. By summing over all the cells, the sketch node selection
complexity is O(∆

∑
C bCn

′
C log(n′C)) = O(∆n · max

C
{bC}

·max
C
{log(nC)}).

Sketch edge selection time. There are at most O(φ) sketch nodes
selected within a 5×5 sub-grid. Within each regional graph, there
are O(φ) runs of Dijkstra searches. The Dijkstra searches in total
consume O(φ∆n′C log(n′C)) time. Summing over all the regional
graphs, the cost is O(φ∆n log n).
Storage. For each sketch node p, it links to at most O(φ) nodes,
thus consumingO(φn) storage. On the other hand, each 5×5 sub-
grid createsO(φ2) sketch edges, and hence consumingO(M2φ2)
storage.

Proof sketch of Lemma 3.
Proof. For two reachable sketch nodes s, t, we suppose that the
shortest path in G between s and t, denoted as s ; t, consists of
nodes s = v0, v1, . . . , vh = t. Let the nearest sketch node to s
along the path s ; t be a node v∗1 . Then we consider two cases
to show (s, v∗1) is a sketch edge.
Case 1: node v∗1 is outside of the outer shell of s. Then node s
must connect to node v∗1 in the original graph G. Otherwise, we
denote the transit edge of the shortest path from s to v∗1 as (v′, v′′)
where v′ is inside the inner shell.

• If v′ 6= s, then v′ must be a sketch node by sketch node
selection strategy (Strategy 1 (1)). This contradicts to the fact
that v∗1 is the nearest sketch node to s.

• If v′ = s, then by Strategy 1 (2), v′′ is selected as a sketch
node, then v∗1 = v′′, otherwise v′′ is a closer sketch node to
s than v∗1 . v′ = s and v∗1 = v′′ imply that node s connects to
node v∗1 in the original graph G. Consequently, by our sketch
edge selection strategy (Strategy 2), s also connects to node
v∗1 in the sketch graph.

Case 2: node v∗1 is inside the outer shell of s. In this case, by our
sketch edge selection strategy (Strategy 2), node s connects to
node v∗1 in the sketch graph.

In a nutshell, s connects to its nearest sketch node along the
shortest path to t. Go on finding the nearest sketch node v∗2 for
v∗1 along the path, we can also show that (v∗1 , v

∗
2) is a sketch

edge. With this repeatable procedure, we conclude that there is a
shortcut version of the shortest s ; t in the sketch graph. Hence
the distance between s and t in the sketch graph is the same as
their shortest distance in the original graph. And hence the sketch
graph conforms to Definition 3.

Corollary 1. For two sketch nodes s and t, let the shortest path
from s to t in G contain sketch nodes s = v∗0 , v

∗
1 , . . . , v

∗
h = t.

Then, ∀0 ≤ i ≤ h−1, (v∗i , v
∗
i+1) is a sketch edge such that either

gd(v∗i , v
∗
i+1) ≤ 3 or edge (v∗i , v

∗
i+1) exists in G.

Proof. Lemma 3 has proven (v∗i , v
∗
i+1) is a sketch edge. It remains

to show either gd(v∗i , v
∗
i+1) ≤ 3 or edge (v∗i , v

∗
i+1) exists in the

original network G. We consider (v∗i , v
∗
i+1) to be (s, v∗1) in the

proof of Lemma 3, and hence we have two cases as discussed in
the proof. For case 2, i.e., v∗i+1 is in the outer shell of v∗i , clearly

we have gd(v∗i , v
∗
i+1) ≤ 3. For case 1, only the second sub-case

is feasible, which states that (v∗i , v
∗
i+1) exists in G.

Proof sketch of Lemma 4.
Proof. We first show the space complexity. Each outer shell
overlaps with at most 25 outer shells, each of which generates
O(φ) transit nodes within its shell range. Hence in total the
number of transit nodes in a shell is O(φ).

We consider the Dijkstra searches for a specific G5 subgraph
with respect to a cell C . The number of transit nodes within the
outer shell of C is O(φ). Suppose the number of nodes in the
outer shell of cell C is n′C , then the cost of the Dijkstra search
conducted in the G5 subgraph corresponding to the outer shell is
O(∆n′C log n′C). Summing over the costs for every cell C , we
have O(

∑
C ∆n′C log n′C) = O(∆n log n).

As for the space complexity, we only need to show the number
of bridge edges associated with a node u, |B(u)|, is O(φ + ∆).
This directly follows from Strategy 3.

Lemma 7. If gd(s, t) ≥ 4, the shortest path between s and t in
(s, t)-sketch, denoted as s ;S t, is a shortcut shortest path of
s ; t in G. That is, for each edge (u, v) in s ;S t, (u, v) ∈
B(s)∪S∪B(t). Furthermore, either 1) gd(u, v) ≤ 3; or 2) edge
(u, v) exists in G.
Proof. We consider the following cases: (1) s and t are sketch
nodes; (2) one of {s, t} is a sketch node, while the other is not;
(3) both s and t are not sketch nodes. The proof for case (1) is
implied by Corollary 1. We next focus on proofs for case (3), since
the proof for case (2) is easily derived from that for case (3).

We first show each edge (u, v) ∈ s ;S t is in B(s) ∪
S ∪ B(t). Let us consider the original shortest path between s
and t, denoted as s ; t = {s = v0, v1, . . . , vh = t}. First,
gd(s, t) ≥ 4 implies that s ; t must contain a cover path as a
subpath, because there is a shortest path starting from s reaches
the outside of the outer shell of s. Consequently, the cover path
contained in s ; t must contain one sketch node u1 closest to s
and therefore (s, u1) ∈ B(s). Similarly, s; t must also contain
one sketch node u2 closest to t and therefore (t, u2) ∈ B(s).
Combining Corollary 1, we have for each edge (u, v) in s ;S t
that (u, v) ∈ B(s) ∪ S ∪ B(t). Similar to Corollary 1, we can
show that edge (u, v) ∈ s ;S t satisfies either 1) gd(u, v) ≤ 3;
or 2) edge (u, v) exists in G. We omit the details here.

Proof sketch of Theorem 1.
Proof. For ease of proof, we conduct the following perturbation: if
one node is on the grid cell border, we deviate its location slightly
to let it locate inside a certain cell. Now, it is easy to show for three
nodes a, b and c, we have gd(a, b) ≥ gd(a, c)− gd(b, c) + 1.

Next, we prove the Theorem. If ROAM(s, t, o, r, ρ) returns
true, then there exists one node o′ ∈ circ(o, r) such that
dist(s, o′) +dist(t, o′) ≤ (1 + ρ)dist(s, t). Given gd(o, s) ≥
5 + dr/δe and gd(o, o′) = dr/δe, we have

gd(o′, s) ≥ gd(o, s)−gd(o, o′)+1 ≥ 5+dr/δe−dr/δe+1 = 6

Similarly, we have gd(o′, t) ≥ 6. Then, there exists a sketch node
p (can be o′ itself) along the shortest path from o′ to s such that
gd(o′, p) < 3 (note: either p is o′ itself or p is in C3 of o′). Next,
we show the following two results: 1) p resides in a ρ-route of
(s, t)-sketch and 2) p ∈ circ(o, r + 21.5δ).

For 1), due to gd(o′, s) ≥ 6 and gd(o′, p) < 3, we have

gd(p, s) ≥ gd(o′, s)− gd(o′, p) + 1 > 6− 3 + 1 = 4,

14

Similarly, gd(p, t) ≥ gd(o′, t)− gd(p, o′) + 1 > 6− 3 + 1 = 4

Hence by Lemma 7, we can exactly compute dist(p, s) and
dist(p, t) in (s, t)-sketch. In addition,

dist(p, s) + dist(p, t) ≤dist(p, s) + (dist(p, o′) + dist(o′, t))

=(dist(p, s) + dist(p, o′)) + dist(o′, t)

=dist(s, o′) + dist(o′, t)

≤(1 + ρ)dist(s, t) (3)

Note that, the distance computed in (s, t)-sketch is at least
dist(s, t), thus Equation 3 implies that node p must reside in a
ρ-route of (s, t)-sketch. For 2),

distE(o, p) ≤distE(o, o′) + distE(o′, p)

≤r + 20.5δ · gd(o′, p) ≤ r + 21.5δ

Proof sketch of Lemma 5.
Proof. If node u∗ in a ρ-route and u∗ has not been scanned, then
consider the shortest path from node s to u∗, {s = u0, u1, . . . ,
uk, uk+1 = u∗}. ∀0 ≤ i ≤ k + 1, we have dist(s, ui) +
dist(ui, t) ≤ (1 + ρ)dist(s, t) as u∗ is in a ρ-route. This implies
if ui is in the queue, then ui+1 must be also in the queue. Hence
all ui must have been scanned before visiting u.
Proof sketch of Lemma 6.
Proof. Positive condition rule. It is sufficient to show the claim
that, if lower dist is monotone, for any node u scanned during
the goal directed search, its true distance from s, dist(s, u), is
exactly calculated. We next prove the claim. For any two consec-
utive nodes u′, u′′ along the shortest path from node s to node
u, it can be shown that node u′ must be scanned before u′′. This
is due to dis[u′′] + lower dist[u′′] = dis[u′] + dist(u′, u′′) +
lower dist[u′′] ≥ dis[u′]+ lower dist[u′]. The last step is due
to the monotonicity of lower dist. Therefore, s ; u cannot be
missed during the search, thus follows the first part of the lemma.

Monotonicity of Equation 2. We first show that when k = 1
the estimation is monotone. To see this, lower dist(u, t) =
|dist(l1, t)−dist(l1, u)|, and lower dist(v, t) = |dist(l1, t)−
dist(l1, v)|. Then, |dist(l1, t) − dist(l1, u)|−|dist(l1, t) −
dist(l1, v)| ≤ |(dist(l1, t) −dist(l1, u))− (dist(l1, t) −
dist(l1, v))| = |dist(l1, u)− dist(l1, v)| ≤ w(u, v). Mono-
tonicity holds for k = 1.

Next, we show the monotone property for k > 1. Let Ai =
|dist(li, s) −dist(li, u)|, Bi = |dist(li, s) − dist(li, v)|, for
1 ≤ i ≤ k. Then, due to the case of k = 1, we have Ai −
Bi ≤ w(u, v). It is sufficient to show max{Ai} −max{Bi} ≤
w(u, v) by two cases: 1) max{Ai}−max{Bi} ≤ 0. Obviously,
max{Ai} −max{Bi} ≤ w(u, v) in this case; 2) max{Ai} −
max{Bi} > 0. Let Aj = max{Ai}, then we have max{Ai

} − max{Bi} = Aj − max{Bi} ≤ Aj − Bj ≤ w(u, v).
Therefore, the monotonicity holds.

Additional experiments. A detour constraint checking algorithm
is hinted in a ride-sharing system [24], which uses pairwise
shortest distance query to verify whether the detour route exceeds
that of (1 + ρ) · dist(s, t). As [24] did not aim at solving the
same problem as ROAM, we adapt its technical idea behind to
answer ROAM queries, and we name the method SG-Ride. The
comparison among the approaches are shown in Figure 9 (with the
default parameters). The performance of Sketch is generally better
than SG-Ride. For D1 and D2, SG-Ride is much less efficient than

D 1 D 2 D 3 D 4 D 5 D 60 . 1
1

1 0
1 0 0

1 0 0 0
1 0 0 0 0

tim
e (

ms
)

D a t a s e t s

 B a s i c
 B I S
 S G - R i d e
 S k e t c h

Fig. 9: Comparison to SG-Ride.

Basic. This owes to that s and t are typically close in D1 and D2,
in which case conducting one pairwise shortest path query is not
faster compared with the Dijkstra search.

Siqiang Luo received the BEng and MS de-
grees from Fudan University in 2010 and 2013
respectively. He is a Ph.D. candidate in the
Department of Computer Science, University of
Hong Kong (HKU) under the supervision of Prof.
Ben Kao and Dr. Reynold Cheng. His research
interests are in the areas of adaptive optimiza-
tion techniques, spatio-temporal data manage-
ment and graph algorithms.

Reynold Cheng received the PhD degree in
computer science from Purdue University, in
2005. He is an associate professor in the Depart-
ment of Computer Science, University of Hong
Kong. He received an Outstanding Young Re-
searcher Award in 2011-2012 from HKU. He has
served as a PC member and reviewer for inter-
national conferences (e.g., SIGMOD, VLDB) and
journals (e.g., TKDE, TODS). He is an associate
editor of TKDE.

Ben Kao received the BSc degree in computer
science from the University of Hong Kong, in
1989, and the PhD degree in computer science
from Princeton University, in 1995. He is cur-
rently a professor in the Department of Com-
puter Science with the University of Hong Kong.
His research interests include database man-
agement systems, data mining, real-time sys-
tems, and information retrieval systems.

Xiaokui Xiao received the PhD degree in com-
puter science from the Chinese University of
Hong Kong in 2008. He is currently an Associate
Professor at the National University of Singapore
(NUS), Singapore. From 2009 to 2017, he was
a faculty member at the Nanyang Technologi-
cal University (NTU), Singapore. His research
interests include data privacy, spatial databases,
graph databases, and parallel computing. He is
an associate editor of TKDE and VLDBJ.

Shuigeng Zhou received the bachelor’s degree
from the Huazhong University of Science and
Technology (HUST), in 1988, the master’s de-
gree from the University of Electronic Science
and Technology of China (UESTC), in 1991, and
the PhD degree in computer science from Fu-
dan University, Shanghai, China, in 2000. He is
currently a professor in the School of Computer
Science, Fudan University. His research inter-
ests include data management, data mining, and
bioinformatics. He is a member of the IEEE.

Jiafeng Hu received the BEng degree from
Jilin University, in 2011, the M.E. degree from
the University of Chinese Academy of Sciences
(UCAS), in 2014, and the PhD degree in com-
puter science from the University of Hong Kong
(HKU), in 2018. His research interests include
spatio-temporal data management and graph
databases.

	Introduction
	The ROAM Query
	Preliminaries
	Index-Free Approaches
	Dijkstra Adapted Approach
	Bi-directional Search with Temporary Stop

	The Sketch Framework
	Basic Idea of the Sketch Graph
	Sketch Construction in Preparation
	The Construction of Sketch Graph

	The Sketch Search
	Optimization
	Extensions and Discussions

	Experiments
	Setup
	Efficiency
	Index Cost
	Effectiveness
	Experiments on Cover Dimension

	Related Work
	Conclusions
	References
	Proofs, Codes, Additional Experiments
	Biographies
	Siqiang Luo
	Reynold Cheng
	Ben Kao
	Xiaokui Xiao
	Shuigeng Zhou
	Jiafeng Hu

