
1

BATON: Batch One-Hop Personalized
PageRanks with Efficiency and Accuracy

Siqiang Luo, Xiaokui Xiao, Wenqing Lin, Ben Kao

Abstract—Personalized PageRank (PPR) is a classic measure of the relevance among different nodes in a graph, and has been
applied in numerous systems, such as Twitter’s Who-To-Follow and Pinterest’s Related Pins. Existing work on PPR has mainly focused
on three general types of queries, namely, single-pair PPR, single-source PPR, and all-pair PPR. However, we observe that there are
applications that rely on a new query type (referred to as batch one-hop PPR), which takes as input a set S of source nodes and, for
each node s ∈ S and each of s’s neighbor v, asks for the PPR value of v with respect to s. None of the existing PPR algorithms is able
to efficiently process batch one-hop queries, due to the inherent differences between batch one-hop PPR and the three general query
types.
To address the limitations of existing algorithms, this paper presents Baton, an algorithm for batch one-hop PPR that offers both strong
theoretical guarantees and practical efficiency. Baton leverages the characteristics of one-hop PPR to avoid unnecessary computation,
and it incorporates advanced mechanisms to improve the cost-effectiveness of PPR derivations. Extensive experiments on benchmark
datasets show that Baton is up to 3 orders of magnitude faster than the state of the art, while offering the same accuracy.

Index Terms—Personalized PageRanks, Query Performance, Graph Algorithms

F

1 INTRODUCTION

G IVEN two nodes s and t in a graph G, the Personalized
PageRank (PPR) of t with respect to s, denoted as

π(s, t), is defined as the probability that a random walk
(with decay) from s would terminate at t. PPR is a classic
approach to measure the relevance of t with respect to s,
and has been adopted in numerous systems. For example,
Twitter utilizes PPR to recommend users to other users [11],
and Pinterest applies PPR for content recommendations
[13].

The importance of PPR has motivated numerous solu-
tions [8], [2], [1], [15], [30], [31], [9], [19], [26], [33] that
aim to improve the efficiency of PPR computation. Existing
solutions mainly address three types of PPR queries:
• single-pair PPR, which returns π(s, t) for a given pair

(s, t);
• single-source PPR, which returns π(s, v) for a given s

and every node v in G;
• all-pair PPR, which returns π(u, v) for all possible node

pairs (u, v).
Although these generic query types cover a number of

applications (e.g., [11], [13], [12], [21]), we observe that there
is often a need for more specialized form of PPR queries.
In particular, we consider a problem that we encounter
in Tencent’s massive online gaming platform with a social

• Siqiang Luo and Ben Kao are with the Department of Computer Science,
the University of Hong Kong.
e-mail: {sqluo, kao}@cs.hku.hk

• Xiaokui Xiao is with the School of Computing, National University of
Singapore, Singapore.
e-mail: xkxiao@nus.edu.sg

• Wenqing Lin is with Tencent, Shenzhen, China.
e-mail: edwlin@tencent.com

network G of billions of users. The platform has a PPR-
based mechanism that aims to attract inactive users back
to the platform, and it works as follows. First, for each
inactive user s, the platform inspects her friends in the social
network, and identifies the ones who are active and have
large PPR values with respect to s. Then, the platform asks
each v of those friends to send a message to s to invite her
back, and gives v a reward if s returns to the platform upon
receiving the message. A/B tests show that this PPR-based
mechanism is much more effective than other mechanisms
considered (Detailed statistics can be referred to Section 4.3).
Nonetheless, the computation of PPR poses a significant
challenge for deploying the PPR-based mechanism in Ten-
cent, as the number of inactive users can be up to billions.
That is, given a large subset S of the nodes in G, we need
an efficient method to compute, for each node s ∈ S, the
PPR values of s’s neighbors with respect to s. We refer to
this type of queries as batch one-hop PPR queries.

A naive solution to process batch one-hop PPR is to
answer the query using existing algorithms for single-pair,
single-source, or all-pair PPR queries; nevertheless, this
incurs tremendous computation overheads. In particular, if
we are to answer a batch one-hop query using a single-
source algorithm, then we need to invoke the algorithm
once for each node in S. Assuming that |S| = 108 and
that each invocation of the algorithm requires 100 seconds
(which is typical for the state of the art [31]), the total
processing cost would be 1010 seconds (≈ 317 years), which
is prohibitive even if we can distribute the computation to
a large number of machines. Similarly, answering the query
using a single-pair PPR algorithm would result in efficiency
issues, because (i) we need to apply the algorithm once for
each edge adjacent to the nodes in S, and (ii) the number
of such edges is often two orders of magnitude larger than
|S|. All-pair PPR algorithms are inapplicable, either, as their

O(n2) space overheads restrict their application to small
graphs only.

Contributions. This paper presents a comprehensive study
on batch one-hop PPR queries, and proposes Baton1, an
algorithm that offers both strong theoretical guarantees and
practical efficiency. Given a set S of source nodes and
parameters pf , ε ∈ (0, 1), Baton returns one-hop PPR for
each node s ∈ S, such that with at least 1 − pf probability,
all PPR values returned have at most ε relative error. This
accuracy guarantee matches those provided by the most
advanced methods for single-pair and single-source PPR.
In addition, Baton runs in O

(∑
s∈S

d(s) log(1/pf)
ε2

)
expected

time (where d(s) denotes the degree of s), which is linear to
the total number of edges adjacent to the nodes in S.

Baton is built upon FORA [31] (i.e., the state-of-the-
art approach for single-source PPR), but incorporates three
new techniques that yield significantly improved perfor-
mance for batch one-hop queries. The first technique is
based on a careful analysis of the characteristics of one-
hop PPR, and it enables us to tighten the accuracy bounds
of Baton without extra computation overheads. The second
technique is an adaptive graph traversal mechanism that
considerably improves the cost-effectiveness of Baton in
deriving one-hop PPR values, and we prove that the mech-
anism is a local minimum among a general class of similar
approaches. The third technique is based on vertex covers,
and it significantly reduces Baton’s computation overheads
on undirected graphs.

We experimentally evaluate Baton on 10 datasets (in-
cluding various Tencent datasets and public datasets) with
up to 74.3 million nodes and 1.5 billion edges. Our results
show that Baton outperforms the state of the art by several
orders of magnitude in terms of running time, while offering
the same degree of accuracy. In particular, on a billion-edge
Tencent game-user social network, Baton requires only 2.48
milliseconds on average to process each node s ∈ S in a
batch one-hop query.

A preliminary version of this work appears in [18]. This
paper is a significant extension of [18] in the following
aspects. First, we give a much deeper theoretical analysis
on the Baton algorithm. We show the complexity of Ba-
ton (Lemma 3), and prove that this is close to optimal.
We introduce the concept of generic-baton that generalizes
FORA and Baton. We show that the Baton algorithm is
a local optimum (Lemma 4), which gives evidence why
Baton could be better than FORA in batch one-hop queries.
Second, we present new techniques. We discuss the random
walk reusing technique in Section 3.3, and propose new
optimization approach for undirected graphs in Section 3.4.
Third, we extend the Baton algorithm to run on multi-core
servers (Section 3.5). Finally, we give abundant experiments,
including tests on new datasets, new experiments to show
that Baton offers strong NDCG accuracy in approximating
PageRank values, as well as the A/B test performed on the
Tencent platform (in Section 4.3) to show the superiority of
the one-hop PPR based method (e.g., Baton) over four other
approaches in social network applications.

1. Batch One-Hop Personalized PageRanks

TABLE 1: Frequently used notations

Notation Description

G(V,E) Input graph
n Number of nodes in G
m Number of edges in G

π(s, u) PPR of node u with respect to node s
d Average node degree in G

d(s) Out-degree of node s
ε PPR relative accuracy guarantee
pf Failure probability
δ Threshold of PPR values

Nout(v) The set of out-neighbors of v
C Vertex cover of G

r(s, u) Residue of node u, with respect to source node s
π◦(s, u) Reserve of node u, with respect to source node s
π̂(s, u) Estimate of π(s, u)

The remainder of the paper is organized as follows.
Section 2 defines the problem and discusses some related
work. Section 3 explains the details of Baton. Section 4
presents experimental results. Finally, Section 5 concludes
the paper.

2 PRELIMINARIES

In this section we present the problem definition of the batch
one-hop queries and the related works.

2.1 Problem Definition

Let G(V,E) be a directed graph with node set V and edge
set E. Given a source node s ∈ V and a decay factor α,
a random walk from s is a traversal of G starting from s,
such that at each step of the traversal, it terminates with α
probability and, with the other 1 − α probability, moves to
a randomly selected out-neighbor of the current node. For
any node t, the Personalized PageRank (PPR) [21] of t with
respect to s, denoted as π(s, t), is defined as the probability
that a random walk from s stops at t.

We aim to answer batch one-hop PPR queries with accuracy
guarantees, defined as follows.

Definition 1 (Approximate Batch One-Hop PPR Queries).
Given a set S of nodes in a graph G, a threshold δ, an
error bound ε, and a failure probability pf , an approxi-
mate batch one-hop PPR query returns an estimated PPR
π̂(s, v) for every node pair (s, v) such that s ∈ S and v
is an out-neighbor of s, such that for all π(s, v) ≥ δ,

|π(s, v)− π̂(s, v)| ≤ ε · π(s, v) (1)

holds with a probability at least 1− pf . �

Our accuracy guarantee (i.e., ensuring ε relative error when-
ever π(s, v) ≥ δ) is consistent with those of the state-of-the-
art solutions for single-pair and single-source PPR [16], [15],
[30], [31]. As suggested in [16], [15], [30], [31], δ is typically
set to δ = O(1/n), because for any fixed s, the average value
of π(s, v) over all possible v ∈ V is 1/n. Table 1 shows the
notations that we frequently use in this paper.

2

Algorithm 1: Forward-Push(G, s, rmax, α)
Input: Graph G, probability α, source node s,

residue threshold rmax
Output: π◦(s, u), r(s, u) for all u ∈ V

1 for u ∈ V do
2 r(s, u) = 0, π◦(s, u) = 0, d(u) = out degree of u

3 r(s, s) = 1
4 while exists u ∈ V such that r(s, u) > rmax · d(u) do
5 Push-Step(G, s, α, u)

Algorithm 2: Push-Step(G, s, α, u)

1 for each v that is an out-neighbor of u do
2 r(s, v) = r(s, v) + (1− α) · r(s,u)d(u)

3 π◦(s, u) = π◦(s, u) + α · r(s, u)
4 r(s, u) = 0

2.2 Main Competitors

Monte-Carlo. The Monte-Carlo (MC) method [8] is a simple
and classical solution for PPR estimation. It generates a
number of random walks starting at s to estimate π(s, t)
for every node t. In particular, if ω random walks are
generated and ω′ of them terminate at t, then ω′

ω is an
unbiased estimate of π(s, t). It has been shown in [8] that,
to achieve the accuracy guarantee in Equation 1, we should
have ω = Ω

(
log (1/pf)

ε2δ

)
.

Forward Push. Forward push [2] is a method for answering
single-source PPR queries (see Algorithm 1 for a pseudo-
code). It maintains, for each node u ∈ V , a reserve π◦(s, u)
and a residue r(s, u), which are dynamically updated by a
propagation process from the source node s. Initially, all re-
serves and residues are set to 0, except that the residue of s is
set to 1. The propagation is then repeatedly conducted based
on Algorithm 1. In brief, conducting a forward push on node
u transfers α portion of its residue to its reserve, while the
remaining (1 − α) portion is equally distributed to the out-
neighbors of u. It can be shown that forward push runs in
O(1/rmax) time, and that when the residue threshold rmax
is set close to 0, the final reserves are close to the actual PPR
scores. However, as pointed out in [31], forward push has
one main deficiency: it can either compute the exact single-
source PPR results at a high cost, or terminate early but with
no guarantee on the result quality.

BiPPR and HubPPR. BiPPR [15] is a method for single-
pair PPR queries that improves over MC and forward push.
Given a node pair (s, t), BiPPR conducts a number of
random walks from s as well as a reverse push [1] from t, and
then combines the information obtained to derive an estima-
tion of π(s, t). The reverse push algorithm is similar in spirit
to the forward push method, except that (i) it follows the
incoming edges of each node instead of the outgoing edges,
and (ii) it derives the residue and reserve of each node in
a different manner. It is shown in [15] that for randomly

chosen t, BiPPR requires O
(√

m log (1/pf)
nε2δ

)
expected time

to achieve the accuracy guarantee in Equation 1, which

is a significant improvement over MC and forward push.
HubPPR [30] is an enhancement of BiPPR that it (i) improves
query efficiency with indexing and (ii) retains the theoretical
guarantees of BiPPR.

FORA. FORA [31] is the state-of-the-art method for single-
source PPR queries, and it is based on a combination of MC
and forward push. Specifically, it first conducts a forward
push with threshold rmax from the source node s, and
then performs random walks from each node v, such that
the number of random walks from v is proportional to its
residue. It is proved in [31] that, for each node u ∈ V ,
the estimate π̂(s, u) = π◦(s, u) + c(u)/K is an unbiased
estimate of π(s, u), where π◦(s, u) is the reserve of u,
K is the total number of random walks that should be
performed if only using MC, and c(u) is the number of
random walks that end at u. It is also shown that, by
setting K = O

(
rsum · (2ε/3+2) log (2/pf)

ε2δ

)
, FORA achieves

the accuracy guarantee in Equation 1, where rsum is the sum
of residues of nodes when the forward push terminates.

The key of FORA is to determine a good threshold
rmax to balance the costs of the forward push phase and
the random walk phase. Wang et al. [31] suggest setting
rmax = O

(
ε√
m
·
√

δ
(2ε/3+2) log (2/pf)

)
, so that the total

cost of forward push and random walks is optimized as

O

(√
(2ε/3+2)m log (2/pf)

ε2δ

)
. In addition, Wang et al. [31] also

propose an indexed version of FORA, referred to as FORA+,
that offers high query efficiency at the costs of space and
preprocessing.

Adaptation to Batch One-Hop PPR. MC and FORA are
single-source PPR algorithms, and hence, they can be
adopted to answer batch one-hop queries by performing
one single-source query for each nodes in S. Meanwhile,
both BiPPR and HubPPR are single-pair PPR methods; if
we are to apply them to process batch one-hop queries, then
we need to perform one single-pair query for each node pair
(s, v), such that s ∈ S and v is an out-neighbor of s. As we
demonstrate in our experiments (Section 4), such adoptions
result in inferior efficiency, due to the inherent differences
between batch one-hop and single-pair/-source queries.

2.3 Other Related Work

Besides the algorithms mentioned in Section 2.2, a lot of
research effort has been spent on answering single-pair,
single-source, or all-pair PPR queries. However, the existing
studies are either difficult to be applied to the batch one-
hop PPR queries due to prohibitive complexities, or not as
efficient as HubPPR or FORA.

Single-Source PPR. Many studies on single-source PPR
queries leverage the matrix-form of the PPR as πs =
α · es + (1 − α) · πs · D−1A, where A ∈ {0, 1}n×n is the
adjacency matrix for the input graph G, and D ∈ Rn×n is a
diagonal matrix whose i-th diagonal element equals to the
out-degree of vi. It can be shown that the solution vector
πs of the matrix-form has its i-th element equal to π(s, vi).
Hence, a typical matrix-based solution to evaluating πs is
to conduct power iteration: 1) start with an initial guess
of πs, e.g., { 1n}

1×n; 2) iteratively refine the guess of πs

3

with matrix-form equation. Simply using the power itera-
tion is costly due to many rounds of matrix-multiplications
required. Therefore, there are a number of studies [9], [19],
[26], [33], [24] that leverage this basic idea of power iteration,
but with various improvements. Among them, the BEAR
algorithm proposed by Shin et al. [26] is the state-of-the-
art algorithm. BEAR reorders the adjacency matrix to obtain
several sparse submatrices, which are less costly to conduct
invert operations. The sub-matrices are then indexed, and
used to answer PPR queries. In a recent work [30], however,
BEAR is shown to be inferior to HubPPR in terms of query
efficiency and accuracy.

Single-Pair PPR. There are a number of earlier studies
that can be applied to improve the efficiency of evaluating
single-pair PPR queries, based on the sampling (or Monte-
Carlo) framework. Fogaras et al. [8] propose to index the
results of random walks, for faster query processing. Nev-
ertheless, it incurs excessive space consumption for large
graphs. Later, Lofgren et al. propose FastPPR [16]. Similar
to BiPPR [15] and HubPPR [30] mentioned in Section 2.2,
the key of FastPPR is to employ a bidirectional estimator
that combines the sampling from the source s and reverse
frontier discovery from the target t. However, FastPPR is
less efficient compared with BiPPR, as indicated in [15], [14].

All-Pair PPR and Others. There are also studies on all-pair
PPRs [28], [26], [29]. However, their complexities for the all-
pair PPR queries are all Ω(n2), making them prohibitive to
be applied to very large graphs. Besides, many problems
that are related to PPR queries have significantly different
problem settings. Therefore, there are different technical
challenges compared with the batch one-hop PPR queries
addressed in this paper. For example, Refs. [6], [10], [25],
[17] study the problem of answering PPR queries in a
distributed cluster of machines. Refs. [20], [32] considers
efficient tracking of the PPRs in evolving graphs. Ref [5]
discusses generalizations of Personalized PageRank with
node-dependent restart. Ref [4] also proposes a PageRank
estimation using the entire random walk path. This version
of random walks gives the same computation complexity as
the ending node based estimation.

3 OUR SOLUTION

In this section, we present efficient algorithms for the
batch one-hop PPR queries. We introduce a tightened lower
bound for one-hop PPR values in Section 3.1, which is
fundamental to our proposed Baton algorithm described in
Sections 3.2∼3.4. In Section 3.5, we introduce a parallel al-
gorithm for the batch one-hop PPR queries, which improves
practical efficiency by multiple CPU cores.

3.1 Lower Bound for One-Hop PPR
Let (s, v) be any node pair in G, and suppose that we
are to estimate π(s, v) with ε relative error. Intuitively, the
estimation is more difficult when π(s, v) is small, since the
margin of error decreases with π(s, v). (This also explains
why the time complexities of MC, BiPPR, HubPPR, and
FORA are all inverse proportional to the PPR threshold δ.)
On the other hand, if we know in advance that π(s, v) is
large, then we could be less stringent in our estimation of

π(s, v), as there is more room for error. This motivates us
to derive a lower bound for one-hop PPR values, so as to
guide our algorithm for batch one-hop PPR. In particular,
we have the following lemma (All the proofs of lemmas can
be found in Section 6).
Lemma 1. For any node s and any out-neighbor t of s, we

have π(s, t) ≥ α(1 − α)/d(s), where d(s) denotes the
out-degree of s.

The above lower bound, albeit simple, could be exploited
to significantly reduce the overhead of batch one-hop PPR
queries. For example, consider the FORA algorithm (dis-
cussed in Section 2.2), which answers any single-source PPR

query from a node s in O

(√
m log (1/pf)

ε2δ

)
expected time,

and ensures ε relative error for any π(s, v) ≥ δ. Applying
FORA to answer a batch one-hop query would require one
single-source query for each node s ∈ S, leading to a total

expected cost of O
(
|S|
√

m log (1/pf)
ε2δ

)
.

As mentioned in Section 2, δ is typically set to O(1/n),
which could be much smaller than α(1−α)/d(s). Therefore,
if we are to invoke FORA for a batch one-hop query, we can
set δ = α(1 − α)/d(s) instead. By Lemma 1, FORA would
still ensure ε relative error in the estimation of π(s, v), as
long as v is an out-neighbor of s. As such, the expected cost
of using FORA to process the query is

O

(∑
s∈S

√
m log (1/pf)

ε2(α(1− α)/d(s))

)
= O

(√
m log (1/pf)

ε2

∑
s∈S

√
d(s)

)
In contrast, setting δ = O(1/n) would result in a total ex-

pected cost of O
(√

m log (1/pf)
ε2 · |S|

√
n

)
, which is inferior

since |S|
√
n >

∑
s∈S

√
d(s) holds.

Similarly, we can incorporate the lower bound in
Lemma 1 into HubPPR, so as to reduce their expected
time complexities for batch one-hop queries. Particularly,
we denote the residue threshold for conducting reverse
push by rmax, which is similar in spirit to the thresh-
old for the forward push. For each pair (s, t), the orig-
inal HubPPR should sample O

(
3rmax log (2/pf)

ε2δ

)
random

walks from the source node s, where δ is set to O(1
n)

typically [15], [30]. Similar to the aforementioned improve-
ment for FORA, we can replace δ with α(1 − α)/d(s)

so that there requires only O
(
3d(s)rmax log (2/pf)

ε2α(1−α)

)
random

walks started at the source node s to ensure ε relative
error in the estimation of π(s, v), as long as v is an out-
neighbor of s. Hence the expected cost of random walks
is O

(
3d(s)rmax log (2/pf)

ε2α(1−α)

)
. Also, by the techniques provided

in [15], the reverse push has an expected cost O(d̄/rmax).
Therefore, by Lagrange optimization techniques to optimize
the total cost O

(
3d(s)rmax log (2/pf)

ε2α(1−α)

)
+ O(d̄/rmax), one can

set rmax = O
(
ε
√

mα(1−α)
d(s)n log (1/pf)

)
to achieve the minimum,

giving the expected cost of computing a single-pair π(s, t)

to be O
(√

md(s) log (1/pf)
nε2α(1−α)

)
. The total expected cost of batch

one-hop PPR is therefore O
(∑

s∈S d(s)
√

md(s) log (1/pf)
nε2α(1−α)

)
.

As shown in our experiments (in Section 4), the above
respective improved FORA and HubPPR perform signifi-
cantly better than their original versions in processing batch

4

Algorithm 3: Baton(G, S, ε, pf , α)
Input: Graph G, source node set S, PPR relative

accuracy guarantee ε, failure probability pf ,
probability α

Output: PPR estimate π̂(s, u), for all s ∈ S, u ∈ N(s)
1 for s ∈ S do

2 K(s) =
(2
3 ε+2)d(s) log (2/pf)

ε2α(1−α)
3 while exists u such that r(s, u) > d(u)

α·K(s) do
4 Push-Step(G, s, α, u) (by Algorithm 2)

5 for t ∈ Nout(s) do
6 π̂(s, t) = π◦(s, t)

7 for v ∈ V and r(s, v) > 0 do
8 for i = 1 to (r(s, v) ·K(s)) do
9 Conduct a random walk from v

10 if the random walk terminates at t then
11 if t ∈ Nout(s) then
12 π̂(s, t) = π̂(s, t) + 1

K(s)

one-hop PPR. Nevertheless, their time complexities are still
unsatisfactory due to the

√
m factor (for the improved

FORA) and
∑
s∈S d(s)1.5 factor (for the improved HubPPR).

In the following, we will address this issue with a new so-
lution whose time complexity is independent of m and only
linear to

∑
s∈S d(s), while it has a much better performance

than the improved FORA and HubPPR.

3.2 The Baton Method
To better utilize the lower bound in Lemma 1, we present the
Baton method shown in Algorithm 3 for batch one-hop PPR
queries. At the first glance, Baton may seem similar to FORA
as they both perform forward push from each node s ∈ S,
followed by generating random walks from the nodes with
non-zero residues. There is one crucial difference, however:
Baton’s forward push phase performs a push step on a node
u whenever

r(s, u) >
d(u)

α ·K(s)
, (2)

where K(s) =
(2
3 ε+2)d(s) log (2/pf)

ε2α(1−α) is a constant that in-
creases with the out-degree d(s) of s (see Lines 2-4 in Al-
gorithm 3); in contrast, FORA’s forward push phase applies
a push step on u whenever

r(s, u) > d(u) · rmax, (3)

where rmax = O
(

ε√
m
·
√

δ
(2ε/3+2) log (2/pf)

)
is a constant

independent of s. In other words, Baton is more likely to
“push” when d(s) is large, whereas FORA does not consider
d(s) when deciding whether a push step is needed. In
what follows, we will explain (i) the rationale between these
two design choices, (ii) why our design is non-trivial with
respect to FORA, and (iii) how our design could lead to
significantly improved performance.

First, it is known that when the “push condition” in
Equation 3 is adopted, the forward push method (i.e., Al-
gorithm 1) runs in O(1/rmax) time [2]. FORA relies on this

result to bound the computation cost of its forward push
phase [31], and hence, it also adopts Equation 3. As such,
changing the push condition from Equation 3 to Equation 2
invalidates the time complexity analysis in [31], and requires
new analytical results to be derived for the revised forward
push method.

Second, the reason that Baton uses the push condition
in Equation 2 is that it helps Baton achieve improved
asymptotic performance by striking a better balance be-
tween forward push and random walks. To explain, let us
consider a generic version of Baton (denoted that is identical
to Algorithm 3, except that the push condition in Line 3 is
changed arbitrarily). In other words, the algorithm performs
a number of push steps based on certain push condition,
and then generates random walks following Lines 7-12
in Algorithm 3 to estimate one-hop PPR. (Note that both
FORA and Baton are special cases of this generic approach.)
We first establish the accuracy guarantee of this algorithm
(referred to as Generic-Baton).

Lemma 2. For all s ∈ S and all out-neighbors v of s, Generic-
Baton returns an estimated PPR π̂(s, v) that satisfies
Equation 1 with at least 1− pf probability.

By Lemma 2, all instantiations of Generic-Baton provide
the accuracy guarantee that we require for batch one-hop
PPR queries. As such, a natural question is: which instanti-
ation could offer us a high efficiency? To answer this ques-
tion, we need to examine the cost and benefit of each push
step, since the push condition is the only differentiating
factor in different Generic-Baton instantiations.

Suppose that we encounter, in the forward push phase,
a node u with reserve π◦(s, u) and residue r(s, u). If we
choose not to perform a push step on u, then according to
Lines 8-12 in Algorithm 3, the random walk phase would
need to generate r(s, u) · K(s) random walks from u. On
the other hand, if we apply a push step on u, then u’s out-
neighbor’s total residue is increased by (1−α) · r(s, u), and
then u’s residue is reset to 0; in that case, the random walk
phase needs to generate (1 − α) · r(s, u) · K(s) random
walks from u’s out-neighbors, but does not require any
random walk from u. Therefore, performing the push step
on u reduces the number of random walks required by
α · r(s, u) ·K(s), at the cost of O(d(u)) computation (since
each of u’s out-neighbor needs to be visited). This explains
why Baton’s push condition is r(s, u) > d(u)/(α ·K(s)): it
ensures that d(u) < α·r(s, u)·K(s), which roughly indicates
that a push step on u could reduce the total computation
cost of the forward push and random walk phases. We
illustrate this strategy with an example.

Example 1. Figure 1 illustrates several typical steps of Baton.
Suppose that K(s) = 8 and α = 0.5. If no push step
is conducted, then Baton requires K(s) = 8 random
walks from the source node s, as illustrated in Figure 1a.
Now consider that we are to decide whether or not
to perform a push step on s, i.e., the only node with
non-zero residue. In that case, we compute the value
of d(s)

α·K(s) , and compare it against r(s, s). Observe that

r(s, s) = 1, while d(s)
α·K(s) = 1

0.5×8 = 0.25, and hence,

5

K(s)=8

α =0.5
u

vs

w

K(s)=8

α =0.5
u

vs

K(s)=8

α =0.5
u

vs

wr(s,s) > d(s)/(α×K(s))

(a) initial state (b) if push on s (c) if push on w

8 8

4

4

Node
s
w
u
v

Residue
0.0
0.5
0.0
0.0

#Samples
0
4
0
0

Reserve
0.5
0.0
0.0
0.0

4

2

1

1
w r(s,w) ≤ d(w)/(α×K(s))

Node
s
w
u
v

Residue
0.0
0.0
0.125
0.125

#Samples
0
0
1
1

Reserve
0.5
0.25
0.0
0.0

Node
s
w
u
v

Residue
1.0
0.0
0.0
0.0

#Samples
8
0
0
0

Reserve
0.0
0.0
0.0
0.0

Fig. 1: Illustration of Baton’s push strategy.

r(s, s) > d(s)
α·K(s) , due to which the push step will be per-

formed, and the result is illustrated in Figure 1b. In par-
ticular, an α fraction of s’s residue is added to its reserve,
resulting in an increased reserve (from 0 to α(= 0.5)).
After that, the residue of node s is reset to 0, meaning
that at this state, no random walk from s is needed. As a
tradeoff, we need 8·(1−α) = 4 more random walks from
w, which is the only out-neighbor of s. Next, we consider
whether a push step is needed on w. From Figure 1b, we
have d(w)

α·K(s) = 2
0.5×8 = 0.5 ≥ r(s, w). In that case, Baton

would not apply a push step on w. �

Based on the push strategy of Baton, we establish its time
complexity as follows.
Lemma 3. Given a set S of source nodes, Baton runs in

O
(∑

s∈S
d(s) log (1/pf)

ε2

)
expected time.

Note that the expected complexity of Baton is near-
optimal. To explain, observe that a batch one-hop PPR query
should return an estimation of π(s, v) for each s ∈ S and
each out-neighbor v of s. As there exist O

(∑
s∈S d(s)

)
such

node pairs (s, v), the time complexity of any batch one-
hop PPR algorithm is Ω(

∑
s∈S d(s)). In comparison, Baton’s

expected time complexity is only a factor of O(
log (1/pf)

ε2)
larger, which is logarithmic to n for a typical setting of
pf = 1/n and ε = 0.5 [15], [30], [31].

Apart from the above result concerning Baton’s effi-
ciency for worst-case inputs, we can also show that for
any input graph G, the computation cost of Baton is a
close to a local minimum in a certain sense. In particular,
let P = {u1, . . . , uh} denote the sequence of nodes on
which Baton performs push steps in its forward push phase,
and R be the set of random walks conducted after that. In
that case, we have |R| = rsum(P) · K(s), where rsum(P)
denotes the sum of all nodes’ residues after the push steps
in P . We quantify the cost of the forward push phase as
cost(P) =

∑
u∈P d(u) · cp, and the cost of the random

walk phase as cost(R) = |R| · cr, where cp and cr are two
constants that denote the cost of changing a node’s residue
or reserve and the expected cost of a random walk, respec-
tively. In other words, the total cost of Baton is quantified
as

cost(P,R) =
∑

u∈P
d(u) · cp︸ ︷︷ ︸

cost ofP

+ rsum(P) ·K(s) · cr︸ ︷︷ ︸
cost ofR

(4)

We have the following result.

Lemma 4. Let P∗ be the sequence of push steps performed
by an instantiation of Generic-Baton given G, and R∗ be
the set of random walks that it generates. Further let P

and R be those of Baton. If P is a prefix of P∗ or P∗ is
a prefix of P , then cost(P∗,R∗) ≥ min{1, crcp , αcp, cr} ·
cost(P,R).

Intuitively, Lemma 4 shows that if an instantiation of
Generic-Baton conducts strictly more (or strictly less) for-
ward push than Baton, then its total cost cannot be lower
than Baton’s by more than a constant factor. This indicates
that Baton’s computation cost is close to a local minimum.

3.3 Reusing of Random Walks
Recall that for each node s ∈ S, Baton needs to generate a
number of random walks from those nodes with non-zero
residues at the end of the forward push phase. In addition,
a node u ∈ V may have non-zero residues in the forward
push phases from two different nodes s1, s2 ∈ S. In that
case, we can improve Baton’s efficiency by reusing random
walks from u when processing s1 and s2. For example,
suppose that we first process s1 and generate x random
walks from u during the random walk phase, after which
we proceed with s2 and find that the random walk phase
requires y > x random walks from u. Then, instead of
performing y new random walks from u, we take the x
walks that were generated during the processing of s1, and
add only y − x new random walks. This approach could
considerably reduce the computation overhead of Baton due
to the reduced cost of random walk generation. The only
issue is that, for each node u ∈ V , we need to record
all random walks that have generated from u (so as to
facilitate reusing in subsequent steps), which leads to some
space overhead. Fortunately, the total space cost incurred
is only O(m). To explain, recall that for any node s ∈ S,
Baton’s random walk phase generates r(s, u) · K(s) from
any node u, where r(s, u) denotes u’s residue after the for-
ward push phase ends. Meanwhile, Baton’s push condition
ensures that r(s, u) ≤ d(u)/(α · K(s)). As a consequence,
r(s, u) · K(s) ≤ d(u)/α, i.e., we need to record at most
d(u)/α random walks from u. Therefore, the total number
of random walks required is

∑
u∈V d(u)/α = m/α, leading

to a space overhead of O(m).

3.4 Vertex Cover based Optimization
We present an optimization technique for online gaming
user networks. These networks are typically undirected
graphs. In addition, the source set S in a batch one-hop PPR
may contain O(n) nodes (which is the case for the online
gaming platform discussed in Section 1). For such graphs,
we can further improve the performance of Baton by ex-
ploiting the characteristics of undirected PPR. In particular,

6

Algorithm 4: Baton-VC(G, S, ε, pf , α)
Input: Graph G, source node set S, PPR relative

accuracy guarantee ε, failure probability pf ,
probability α

Output: PPR estimate π̂(s, u), for all s ∈ S, u ∈ N(s)
1 Compute a vertex cover C of G
2 Invoke Baton(G, C , ε, pf , α)
3 for each s ∈ {S \ C} do
4 for each neighbor v of s do
5 π̂(s, v) = π̂(v, s) · d(v)d(s)

our solution is based on the following result from existing
work [3].
Lemma 5 ([3]). For any two nodes s and v in an undirected

graph, π(s, t) · d(s) = π(t, s) · d(t).

By Lemma 5, given an estimation π̂(t, s) of π(t, s), we
can easily obtain an estimation π̂(s, t) of π(s, t) by setting

π̂(s, t) = π̂(t, s) · d(t)

d(s)
. (5)

In addition, if π̂(t, s) ensures ε relative error, then π̂(s, t)
also guarantees ε relative error. This motivates us to answer
a batch one-hop PPR query with S containingO(n) nodes as
follows. First, we compute a vertex cover C of V using the
standard 2-approximation algorithm [22]. Then, we perform
a batch one-hop query using C as the source set, which
provides us an approximate PPR π̂(c, v) for any c ∈ C and
any v that is c’s neighbor. Note that these PPR approxima-
tions include the results for any one-hop PPR query with
s ∈ S ∩C . Meanwhile, for any node s ∈ S \C , its neighbors
must be all in C (since C is a vertex cover). Accordingly, for
any neighbor t of s, we obtain an approximate PPR π̂(s, t)
using Equation 5. Algorithm 4 presents the pseudo-code of
this approach.

However, the above approach has one potential issue
when one takes the value of δ for further pruning. Recall
that in the definition of the batch one-hop PPR query (Def-
inition 1), only the PPRs larger than δ are considered to be
guaranteed with an ε relative error. Hence, in the case where
δ > α(1−α)/d(s), one can use δ directly as the lower bound
of the one-hop PPR. When Baton incorporates this kind of δ-
based pruning, Baton only ensures ε relative error for those
PPR values no smaller than δ. In other words, if for nodes
c ∈ C and v ∈ V we have π(c, v) < δ, then π̂(c, v) do not
guarantee ε relative error. In that case, if we use Equation 5
to compute π̂(v, c) = π̂(c, v) · d(c)d(v) , then π̂(v, c) would not
ensure ε relative error, either. This would be an issue when
π(v, c) > δ, since we are supposed to make sure that all PPR
at least δ should have at most ε relative error.

To remedy this, one can do the following. When an-
swering one-hop PPR query for a node v which is not in
the vertex cover C , we first check whether all the PPRs
of its one-hop neighbors are of the accuracy indicated in
Equation 1. In particular, if for any of v’s neighbor c, we
have α(1−α)/d(c) ≥ δ, then we are sure that any estimated
π̂(c, v) is of the accuracy guarantee in Equation 1. Then, us-
ing the aforementioned approach to compute π̂(v, c) using
π̂(c, v) maintains the same accuracy.

TABLE 2: Datasets. (K = 103, M = 106, B = 109)

Name n m Type Additional Info.

DBLP 613.6K 2.0M undirected dblp.com
Web-St 281.9K 2.3M directed stanford.edu
Pokec 1.6M 30.6M directed pokec.azet.sk
LJ 4.8M 69.0M directed livejournal.com
Orkut 3.1M 117.2M undirected orkut.com
Twitter 41.7M 1.5B directed twitter.com
Tencent-x1 26.1M 485.6M undirected Tencent graphs
Tencent-x2 50.1M 792.0M undirected Tencent graphs
Tencent-x3 58.2M 1.1B undirected Tencent graphs
Tencent-x4 74.3M 1.5B undirected Tencent graphs

3.5 Multi-Core Parallelization
Parallelizing Baton with multiple cores is relatively simple
since the one-hop queries for different source nodes in S are
independent. In our implementation, we put the |S| one-
hop queries into a queue, and create one thread per core to
process the queries one by one. For load balancing, we order
the |S| queries in descending order of the degrees of their
source nodes, since the processing cost of a query is linear to
the degree of the source node (see Lemma 3). In particular,
we have the following results.
Lemma 6. Suppose that the last query processed by the i-

th thread takes t(i) seconds, and that the i-th thread
accomplishes all of its queries in T (i) seconds. Then,

max
1≤i≤q

T (i)− min
1≤j≤q

T (j) ≤ max
1≤p≤q

t(p)

where q is the total number of threads.

Intuitively, the lemma states that the maximum work-
load difference among any two threads is bounded by the
maximum time required by the last queries assigned to
the threads. This explains why we order the queries in
descending order of their estimated costs.

4 EXPERIMENTS

In this section, we experimentally study the efficiency and
accuracy of Baton, compared with the state-of-the-art meth-
ods, on various public benchmark datasets and Tencent
datasets. We also evaluate the performance of parallel ver-
sion of Baton introduced in Section 3.5. Finally, we present
the results of an A/B test we conducted at Tencent plat-
form, which demonstrate the effectiveness of the PPR based
mechanism compared with other methods.

4.1 Settings
Datasets. We performed experiments on 10 real graphs.
Among them, DBLP, Stanford Web (abbreviated as Web-
St), Pokec, LiveJournal (abbreviated as LJ), Orkut, Twitter
are used in recent works [15], [30], [31] as benchmark
datasets for evaluating the efficiency and accuracy of PPRs.
Tencent-x1 ∼ Tencent-x4 are four user networks from four
representative Tencent games. The details of the datasets are
shown in Table 2.

Methods and queries. We compare Baton with MC [8],
HubPPR [30], FORA+ [31], and the respective optimized
versions of the state-of-the-art algorithms FORA-OPT

7

dblp.com
stanford.edu
pokec.azet.sk
livejournal.com
orkut.com

DBLP Web-St Pokec LJ Orkut Twitter
10 4
10 3
10 2
10 1
100
101
102

pe
r-q

ue
ry

 ti
m

e
(s

ec
s)

MC HubPPR HubPPR-OPT FORA+ FORA-OPT Baton

Tencent-x1 Tencent-x2 Tencent-x3 Tencent-x4
10 5

10 4

10 3

10 2

10 1

100

pe
r-q

ue
ry

 ti
m

e
(s

ec
s)

FORA-OPT Baton

(a) Benchmark public graphs. (b) Tencent graphs.

Fig. 2: Efficiency.

and HubPPR-OPT using the tightened accuracy bounds
(Lemma 1). FORA-OPT and HubPPR-OPT are the improved
methods we described in Section 3.1. We name the method
FORA-OPT (resp. HubPPR-OPT) to distinguish it with the
original FORA (resp. HubPPR). We also show the improve-
ment of multi-core Baton (introduced in Section 3.5) over
Baton (using a single core). Note that, when we compare
Baton with other baseline algorithms, we always report
single-core performance for all the methods for fairness,
as there are no existing parallelized versions of the base-
line algorithms. The implementations of HubPPR [30] and
FORA+ [31] are obtained from their respective authors.
We implement the other algorithms by ourselves. All the
methods are implemented by C++. For each dataset, we
choose 1000 source nodes uniformly at random to compute
the 1000 one-hop PPR queries, whose running times are
averaged and reported. Following previous work [16], [15],
[30], [31], we set δ = 1/n, pf = 1/n, and ε = 0.5 by default.
Our experiments are conducted on a Linux machine with an
Intel 2.6GHz CPU and 64GB memory.

4.2 Performance

We first investigate the performance on public datasets.
Figure 2 (a) shows the per-query efficiency of the methods.
We do not report the running times of HubPPR, HubPPR-
OPT and MC for the largest Twitter dataset, because 1) MC
fails to finish within 500 seconds per query; 2) We are not
able to build the index of HubPPR/HubPPR-OPT for the
billion-edge graph, due to the excessively large memory
required.

As expected, the classic algorithm MC runs relatively
slow, and if S is a large subset of V , it would fail to
handle a moderate sized graph Pokec. For example, let us
set |S| = 1M . Then, if to estimate the overall cost based
on the scaled average query time, MC takes 89s×1M=2.8
years to compute the batch one-hop PPRs for Pokec, which
is not satisfactory. The state-of-the-art algorithms, i.e., FORA
and HubPPR, significantly outperform MC. However, they
are still much slower compared with their respective opti-
mized algorithms, i.e., FORA-OPT and HubPPR-OPT. The
improvement of FORA-OPT and HubPPR-OPT is expected
because the tightened bound indicated in Lemma 1 allows
the number of random walks to be significantly reduced,
while still maintaining the worst-case accuracy guarantee.

Baton consistently outperforms the other algorithms, on
all the datasets. In particular, Baton is around 3 orders of
magnitude faster than FORA and HubPPR. Even compared
with FORA-OPT and HubPPR-OPT, Baton is still around

TABLE 3: Statistics of two phases in FORA-OPT and Baton.

Dataset (method) Push cost Random walk cost Total

DBLP (FORA-OPT) 29,956 746 30,702
DBLP (Baton) 607 1,864 2,471
LJ (FORA-OPT) 166,220 3,134 169,354
LJ (Baton) 1,064 5,918 6,982

one order of magnitude faster. That means, among all the
methods we compare, Baton is the most suitable to process
batch one-hop queries, due to its significant improvement
in efficiency.

As we analyzed in Section 3.1, Baton employs an opti-
mized mechanism to minimize the overall cost. To further
illustrate this point by experiments, we summarize the av-
erage costs of forward push phase and random walk phase
for FORA-OPT and Baton on the representative datasets in
Table 3. The push cost is defined by the number of executing
Line 2 in Algorithm 2. For example, when a push-step
(Algorithm 2) is performed on node u, Line 2 is executed
d(u) times, and therefore d(u) reflects the cost of conducting
a push step. The cost of random walks, as we mentioned in
Section 3.2, is reflected by the number of random walks.
From Table 3 we observe that FORA-OPT is overly using
push. One can refer to the numbers of Baton for LJ dataset,
which indicates that by conducting pushes at a cost of 1064,
the remaining workload of random walks becomes 5918.
However, FORA-OPT uses 166220/1064=156 times more
push costs than Baton, only to reduce the workload of ran-
dom walks by (5918− 3134)/5918 = 47%. This over-use of
push renders FORA-OPT being significantly outperformed
by Baton. In particular, as shown in Figure 2 (a), Baton is
25.4 times faster than FORA-OPT in DBLP, and 67.5 times
faster in LJ. The superiority of Baton over FORA-OPT agrees
well with our analysis in Section 3.1.

To further investigate Baton’s performance on Tencent
graphs, we compare the performance between FORA-OPT
and Baton. For clarify, we only remain the closest competitor
FORA-OPT from now on, because 1) MC, HubPPR and
FORA have been shown to be significantly slower than
FORA-OPT (see Figure 2 (a)) and fail to efficiently handle
batch one-hop PPR query on large graphs; 2) HubPPR-OPT
fails to scale to billion-edge graphs while many Tencent
graphs are of billion-edge scale.

As shown in Figure 2 (b), Baton also performs sig-
nificantly better than the best competitor FORA-OPT on
Tencent graphs, by around two orders of magnitude. This
means the superiority of Baton is robust to various pub-

8

0.1 0.3 0.5 0.7 0.9
10 5
10 4
10 3
10 2
10 1
100

Tencent-x1

0.1 0.3 0.5 0.7 0.9
10 5
10 4
10 3
10 2
10 1
100

Tencent-x4

0.1 0.3 0.5 0.7 0.9
10 5
10 4
10 3
10 2
10 1
100

pe
r-q

ue
ry

 ti
m

e
(s

ec
s) Pokec

0.1 0.3 0.5 0.7 0.9
10 5
10 4
10 3
10 2
10 1
100

LJ
FORA-OPT Baton

Fig. 3: Varying accuracy guarantee ε.

lic graphs and Tencent graphs, which exhibit significantly
different characteristics (e.g., average degree, degree distri-
butions).

Figure 3 shows that the performance of Baton is con-
sistently better than FORA-OPT, with respect to various
values of relative error ε, on four representative datasets. As
expected, all the methods have better performance when ε is
set to larger values, e.g., 0.9, since fewer pushes and random
walks are required to achieve the required ε relative error.
Fewer pushes and random walks, however, also typically
makes it more difficult to balance the costs of forward
push and random walks. Interestingly, our results show
that the relative improvement of Baton over FORA-OPT is
more significant when ε is large, demonstrating that in this
case the push condition employed in Baton is much more
effective than that of FORA-OPT. Take Tencent-x4’s case as
an example, Baton runs 37.8 times faster than FORA-OPT
for ε = 0.1, and 246.7 times faster when ε = 0.9.

Accuracy. Recall that the main application of the batch one-
hop PPR queries is about ordering the one-hop neighbors
in terms of their PPR scores. A classic measure of the
ordering quality is the Normalized Discounted Cumulative
Gain (NDCG) [7], which is frequently employed to measure
the difference between the returned ordering and the actual
ordering (e.g., [23]). To compute the NDCG for a method
M, we sample 100 source nodes, and for each of them
we compute the ordering of its one-hop neighbors based
on the computed PPR scores using M. With the NDCG
formulae, this ordering is compared against the actual or-
dering based on the ground truth of PPR scores 2. If the
estimated ordering is close to the actual ordering, then the
NDCG accuracy is close to 100% (We refer interested reader
to [7], [23] for more details). Table 4 shows Baton’s NDCG
accuracies, comparing to FORA-OPT, the closest competitor
in terms of efficiency and scalability. We perform the tests
on 5 of our datasets (We omit the other datasets due to the
prohibitive time required to compute the ground truth). The
test shows that both Baton and FORA-OPT have very high
NDCG accuracies.

Effect of Vertex Cover. We evaluate the effectiveness of ver-
tex cover based approach, i.e., Algorithm 4. As mentioned
in Section 3.4, the approach helps reduce the cost when
|S| = O(n). We therefore test the case where S = V , on
two representative undirected graphs, DBLP and Orkut. We

2. Following [30], [31], the ground truth of PPR scores is computed
by power iteration method. We set the absolute PPR error of power
iteration method to be 10−9.

TABLE 4: NDCG accuracy.

Dataset DBLP Web-St Pokec LJ Orkut

FORA-OPT 100% 100% 99.8% 100% 100%
Baton 100% 100% 100% 100% 100%

TABLE 5: Speed-up ratio V.S. number of cores.

Datasets 5 cores 10 cores 15 cores

Twitter 4.8 9.0 12.1
Orkut 4.5 8.5 11.4

compute the total running time of Baton (Algorithm 3) and
Baton-VC (Algorithm 4). By employing the techniques of
vertex cover, the total running time for the batch one-hop
queries for DBLP (resp. Orkut) has improved 1.52 (resp. 1.4)
times respectively. The improvement is expected, as Baton-
VC can reduce up to half of the cost by employing Lemma 5.

Mulit-Core Baton. We evaluate the performance of the
multi-core Baton in Section 3.5. We run the algorithm for
a batch one-hop query on two largest public graphs, i.e.,
Twitter and Orkut, with a randomly selected source set S
such that |S| = 106. Table 5 shows the speed-up ratio of the
performance of multi-core Baton compared with the single-
core Baton. The results show that the speed-up ratio is in
general reversely proportional to the number of CPU cores
used, demonstrating that the workloads on each core are
quite well balanced and the computation resources of each
core are highly utilized.

4.3 A/B Test for Effectiveness of PPR

We have conducted an A/B test on the Tencent platform,
which demonstrates that the PPR based method (mentioned
in Introduction) is more effective than the other four meth-
ods we considered for attracting back the inactive game
users. Each method M∗ is tested as follows. First, for each
inactive user s, the platform inspects her friends in the
social network G formed by the game users, and identifies
the ones who are active and important to s where the
importance is measured by M∗. Then, the platform asks
each v of those friends to send a message to s to invite her
back, and gives v a reward if s returns to the platform upon
receiving the message. The following are the five methods
we consider to measure the importance of a friend v (with
respect to s).

9

TABLE 6: Effectiveness in A/B test.

Methods Click rate C Through rate T

PPR 39.94% 3.91%
TAP 37.88% 3.27%
PR 36.77% 3.16%
Degree 36.86% 3.10%
Proximity 36.93% 3.12%

• PPR. The importance of v equals to PPR(s, v) in G.
• TAP (Topical Affinity Propagation) [27]. Measures the

importance of v based on the influence of v to s using
TAP. This method is the one originally employed by the
Tencent platform before the PPR method is introduced.

• PR (Global PageRank). The importance of v is mea-
sured by the global PageRank score of v in G.

• Degree. The importance of v is based on the number of
friends v has in G.

• Proximity. The importance of v is measured by the total
number of the monthly gaming interactions between s
and v, where the interactions include three activities: 1)
game battle; 2) chatting and 3) reward sharing.

The A/B test is conducted on a game with about 220
million players, among which around 42 million monthly
active players are identified to participate in the test to send
invitations to their inactive friends. The test has a duration
of 18 days, which are from April 4 to April 21 in 2018. Two
classic metrics including the click rate C and through rate
T are considered, where C is the percentage of the users
who click the invitation link among those who view the
invitation messages, and T is the percentage of the users
who futher log in the game through the invitation link
among those who click the invitation link.

The results are shown in Table 6. The PPR based method
is more effective than all the others in both click rate and
through rate. The improvement is significant for business.
Consider that there are around 180 million inactive users in
the game. Based on the result shown in Table 6, replacing the
TAP based method with the PPR based method would at-
tract back roughly 180M ·(39.94%·3.91%−37.88%·3.27%) ≈
5.8× 105 more inactive users.

One reason for the less effectiveness of PR and Degree
is that they are more of global measures than measures that
are personalized to s. Personalization, however, is crucial
in our application. For example, a friend user v with a
large degree in G can be popular among all users but this
does not indicate that v is necessarily the most important
to s. Therefore PR and Degree are not as effective as a
personalized measure like PPR. PPR is also superior to the
method Proximity as the latter suffers from the data sparsity.
In the game user network we tested, each user s only has
gaming interaction history with around 30% of her friends.
As a result, for the remaining roughly 70% friends of s,
the method Proximity cannot distinguish their importance
with respect to s. This lack of information renders the
Proximity method to be less satisfied. Further, we discover
that the invitation senders that are identified for an inactive
user s by PPR are quite different from those identified by
TAP. Particularly, the senders suggested by PPR have about
15.3% more monthly gaming interactions with s on average,

compared with the senders identified by TAP. This hints
that the senders identified by the PPR are more close to s
in gaming compared with those suggested by TAP, which
could be a reason for the superiority of PPR over TAP.

5 CONCLUSION

In this paper, we conducted a comprehensive study on the
batch one-hop PPR queries, which is a significant problem
we encountered in deploying the applications on the Ten-
cent online gaming platform with massive user bases. The
motivation of the batch one-hop PPR is the observation
that the PPR based mechanism has a significantly better
effectiveness in attracting back the inactive game users,
but its prohibitive computational cost hinders its appli-
cation. Particularly, employing the existing state-of-the-art
PPR algorithms to address batch one-hop PPR queries fail
to scale to large graphs. To address this issue, we propose
Baton, an adaptive mechanism that answers the batch one-
hop PPR queries cost-effectively. Baton incorporates various
optimizations, resulting in a method that is up to 3 orders
of magnitude faster than the state-of-the-art algorithms.
We also investigate the solutions for the parallelization of
Baton. This significant efficiency improvement makes the
deployment of the PPR based mechanism feasible.

6 PROOFS

Proof of Lemma 1. Consider any random walk that starts
from s. The walk has (1 − α)/d(s) probability to move to
t in the first step, after which it has α probability to stop.
Therefore, the walk has at least α(1− α)/d(s) probability to
terminate at t, which proves the lemma.

Proof of Lemma 2. We consider the case for a source node
s. Ref. [31] has shown the following result: If we are given
a source node s, the reserves π◦(s, ·) and residues r(s, ·)
resulted from any forward push process started at s, then
we can achieve the PPR accuracy indicated in Equation 1
for every node u ∈ V with π(s, u) ≥ δ, through the following
procedures: 1) for each node v ∈ V , generate r(s, v)K(s)

random walks from v, where K(s) =
(2
3 ε+2) log (2/pf)

ε2δ . 2)
After finishing all the random walks, for each node u,
estimate π̂(s, u) = π◦(s, u) + c(u)/K(s), where c(u) is the
number of random walks that end at u.

With the above result, recall that generic-baton follows
the above procedure but with a different value of K(s)
(see Line 2 in Algorithm 3). That is, generic-baton sets
K(s) to (2

3 ε+2)d(s) log (2/pf)

ε2α(1−α) instead of (2
3 ε+2) log (2/pf)

ε2δ . This
modification of K(s) is validated by Lemma 1. To explain,
Lemma 1 says that the PPR of any one-hop neighbor of s is
at least α(1 − α)/d(s). Therefore, in the above procedure,
we can replace δ with α(1 − α)/d(s) without losing the
accuracy guarantees for the one-hop PPRs of s. This results
inK(s) =

(2
3 ε+2)d(s) log (2/pf)

ε2α(1−α) , which is employed by generic-
baton. Hence the lemma holds.

Proof of Lemma 3. For a source node s, the PPR compu-
tation initiated by Baton does not increase the complexity
of directly conducting random walks from s. The reason
is, when a push step is applied on node u, the number of

10

random walks is reduced by O(α · r(s, u) · K(s)), while
incurring a cost O(d(u)). Since the expected complexity of a
random walk isO(1), the cost reduced by a push is therefore
expected O(α · r(s, u) ·K(s)). Based on the push condition
of Baton, we have d(u) < α · r(s, u) · K(s). Therefore,
the complexity will not increase because of the pushes.
On the other hand, if no pushes is conduct, the cost is
O(K(s)) = O(

d(s) log (1/pf)
ε2). Summing the cost over every

node in S gives O(
∑
s∈S K(s)) = O(

∑
s∈S

d(s) log (1/pf)
ε2).

Proof of Lemma 4.

Case 1. P∗ is a prefix of P . We first compare cost(P) and
cost(P∗). Let P◦ = P − P∗, then,

cost(P) =cost(P∗) + cost(P◦) = cost(P∗) +
∑
u∈P◦

d(u) · cp

(6)

Meanwhile, after the pushes in P∗ have been applied,
further pushes on node u ∈ P◦ still satisfy r(s, u) > d(u)

α·K(s)
(Based on the condition of Baton), which gives

d(u) < α · r(s, u) ·K(s) (7)

Next, we compare cost(R∗) and cost(R). When a push step
is applied on a node u ∈ P◦, the sum of residues is reduced
by α · r(s, u). Hence,

cost(R∗) = cost(R) +
∑
u∈P◦

α · r(s, u) ·K(s) · cr (8)

It then follows that,

cost(P∗,R∗)
cost(P,R)

=
cost(P∗) + cost(R∗)
cost(P) + cost(R)

(By Eqn. 6)

=
cost(P∗) + cost(R∗)

cost(P∗) +
∑
u∈P◦(d(u) · cp) + cost(R)

(By Eqn. 8)

=
cost(P∗) + cost(R) +

∑
u∈P◦(α · r(s, u) ·K(s) · cr)

cost(P∗) +
∑
u∈P◦(d(u) · cp) + cost(R)

(By Eqn. 7)

>
cost(P∗) + cost(R) +

∑
u∈P◦(α · r(s, u) ·K(s) · cr)

cost(P∗) + cost(R) +
∑
u∈P◦(α · r(s, u) ·K(s) · cp)

(9)

Now, if cr ≥ cp, then the R.H.S. of Equation 9 is at least 1; if
cr < cp, then R.H.S. of Equation 9 equals

cr
cp
· cp
cr
(cost(P∗) + cost(R)) + cr

cp

∑
u∈P◦(α · r(s, u) ·K(s) · cp)

cost(P∗) + cost(R) +
∑

u∈P◦(α · r(s, u) ·K(s) · cp)

cr
cp
·

cp
cr
(cost(P∗) + cost(R)) +

∑
u∈P◦(α · r(s, u) ·K(s) · cp)

cost(P∗) + cost(R) +
∑

u∈P◦(α · r(s, u) ·K(s) · cp)

>
cr
cp
· 1 =

cr
cp

Hence, for case 1, cost(P∗,R∗) ≥ min{1, crcp } · cost(P,R).

Case 2. P is a prefix of P∗. Suppose that at time t0 Baton
terminates its push phase, whose cost is denoted by C0.
Further suppose that when the push steps according to P
have been finished, node u’s residue is r(s, u). Based on the
push-termination condition (Line 3 in Algorithm 3), at time
t0 every node u would satisfy

d(u) ≥ α · r(s, u) ·K(s) (10)

where K(s) =
(2
3 ε+2)d(s) log (2/pf)

ε2α(1−α) .
On the other hand, at time t0 the cost of random walks

attached in node u is r(s, u) ·K(s), which is the number of
random walks to be performed from u (referred to Line 8
of Algorithm 3). Note that {P∗,R∗} is a push-extended ver-
sion of {P,R}, such that it conducts any possible additional
pushes after time t0. Let us compare the costs of {P∗,R∗}
and {P,R}. First,

cost(P,R) = C0 +
∑
u∈V

r(s, u) ·K(s) · cr︸ ︷︷ ︸
cost of random walks

(11)

As for {P∗,R∗}, we denote V ∗ as the set of nodes for which
further push steps are performed after time t0. Then, for the
nodes in V \V ∗, no further push steps are performed on
them. At the time when the push steps of P∗ have been
finished, the cost of random walks started at nodes in V \V ∗
is at least

∑
u∈{V \V ∗} r(s, u) ·K(s) · cr , because the residues

of nodes in V \V ∗ will not decrease after time t0. For node
u ∈ V ∗, {P∗,R∗} incurs an additional push cost at least
d(u) · cp, because one single push step performed on u costs
d(u) · cp. Hence, the push cost due to the nodes in V ∗ is at
least

∑
u∈V ∗ d(u) · cp. In a nutshell,

cost(P∗,R∗) ≥ C0 +
∑

u∈V ∗
d(u) · cp︸ ︷︷ ︸

lower bound of cost(P∗)

+
∑

u∈{V \V ∗}

r(s, u)K(s)cr︸ ︷︷ ︸
lower bound of cost(R∗)

(by Eqn. 10)

≥C0 +
∑

u∈V ∗
αr(s, u)K(s)cp +

∑
u∈{V \V ∗}

r(s, u)K(s)cr

≥C0 +
∑
u∈V

min{αcp, cr}r(s, u)K(s) (12)

By Equations 11 and 12,

cost(P∗,R∗)
cost(P,R) ≥

C0 + (min{αcp, cr})
∑

u∈V r(s, u)K(s)

C0 +
∑

u∈V r(s, u)K(s)

≥min{1, αcp, cr}

Hence, for case 2 we have

cost(P∗,R∗) ≥ min{1, αcp, cr} · cost(P,R)

Combining case 1 and case 2 gives

cost(P∗,R∗) ≥ min{1, cr
cp
, αcp, cr} · cost(P,R)

Proof of Lemma 6. Suppose that T (i) is the largest
among {T (1), . . . , T (q)}, and T (j) is the smallest among
{T (1), . . . , T (q)}. Then we need to prove T (i)−T (j) ≤ t(k),
where t(k) is the maximum time required by the queries that
are the last processed queries at each of the threads. In other
words, t(k) = max1≤p≤q t(p). We assume by contradiction
that T (i) − T (j) > t(k). Let Qi be the last processed query
at the i-th thread. Given that query Qi runs in t(i) seconds,
we have

t(k) ≥ t(i)⇒ T (i)− T (j) > t(i)⇒ T (j) < T (i)− t(i)
(13)

Equation 13 indicates that, when the j-th thread becomes
idle at time T (j), the i-th thread has not obtained query
Qi. As a result, there should be at least one queries (e.g.,

11

12

Qi) that remain in the queue at time T (j). It follows that
at time T (j) the j-th thread should gain another query
from the queue for processing (the presumption here is
that any reasonable parallelization mechanism won’t let a
thread be idle while there are still tasks to process). Now
the discussion is divided into two cases: (1) if the j-th
thread successfully obtains one query from the queue at
time T (j), then it contradicts to the fact that the j-th thread
has accomplished all its queries at time T (j). (2) if the j-
th thread cannot obtain any query from the queue, then
there must be other idle threads at time T (j), and these
idle threads obtain all the remaining queries in the queue,
including Qi, at time T (j). Consequently, Qi cannot be
obtained by the i-th thread because at time T (j) the i-th
thread is still not idle. This contradicts to the fact that Qi
is the last processed query (i.e., the ending task) of the i-th
thread. Therefore, in either case, violation ensues.

REFERENCES

[1] R. Andersen, C. Borgs, J. Chayes, J. Hopcraft, V. Mirrokni, and S.-
H. Teng, “Local computation of pagerank contributions,” WAW,
pp. 150–165, 2007.

[2] R. Andersen, F. Chung, and K. Lang, “Local graph partitioning
using pagerank vectors,” in FOCS, 2006, pp. 475–486.

[3] K. Avrachenkov, P. Gonçalves, and M. Sokol, “On the choice of
kernel and labelled data in semi-supervised learning methods,” in
WAW, 2013, pp. 56–67.

[4] K. Avrachenkov, N. Litvak, D. Nemirovsky, and N. Osipova,
“Monte carlo methods in pagerank computation: When one it-
eration is sufficient,” SIAM Journal on Numerical Analysis, vol. 45,
no. 2, pp. 890–904, 2007.

[5] K. Avrachenkov, R. Van Der Hofstad, and M. Sokol, “Personalized
pagerank with node-dependent restart,” in WAW, 2014, pp. 23–33.

[6] B. Bahmani, K. Chakrabarti, and D. Xin, “Fast personalized pager-
ank on mapreduce,” in SIGMOD, 2011, pp. 973–984.

[7] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamil-
ton, and G. Hullender, “Learning to rank using gradient descent,”
in ICML, 2005, pp. 89–96.

[8] D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós, “Towards scal-
ing fully personalized pagerank: Algorithms, lower bounds, and
experiments,” Internet Mathematics, vol. 2, no. 3, pp. 333–358, 2005.

[9] Y. Fujiwara, M. Nakatsuji, T. Yamamuro, H. Shiokawa, and
M. Onizuka, “Efficient personalized pagerank with accuracy as-
surance,” in KDD, 2012, pp. 15–23.

[10] T. Guo, X. Cao, G. Cong, J. Lu, and X. Lin, “Distributed algorithms
on exact personalized pagerank,” in SIGMOD, 2017, pp. 479–494.

[11] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and R. Zadeh, “Wtf:
The who to follow service at twitter,” in WWW, 2013, pp. 505–514.

[12] H.-N. Kim and A. El Saddik, “Personalized pagerank vectors for
tag recommendations: inside folkrank,” in RecSys, 2011, pp. 45–52.

[13] D. C. Liu, S. Rogers, R. Shiau, D. Kislyuk, K. C. Ma, Z. Zhong,
J. Liu, and Y. Jing, “Related pins at pinterest: The evolution of a
real-world recommender system,” in WWW (Companion), 2017, pp.
583–592.

[14] P. Lofgren, “Efficient algorithms for personalized pagerank,” arXiv
preprint arXiv:1512.04633, 2015.

[15] P. Lofgren, S. Banerjee, and A. Goel, “Personalized pagerank
estimation and search: A bidirectional approach,” in WSDM, 2016,
pp. 163–172.

[16] P. A. Lofgren, S. Banerjee, A. Goel, and C. Seshadhri, “Fast-ppr:
Scaling personalized pagerank estimation for large graphs,” in
KDD, 2014, pp. 1436–1445.

[17] S. Luo, “Distributed pagerank computation: An improved theoret-
ical study,” in AAAI, 2019.

[18] S. Luo, X. Xiao, W. Lin, and B. Kao, “Efficient batch one-hop
personalized pageranks,” ICDE, 2019.

[19] T. Maehara, T. Akiba, Y. Iwata, and K.-i. Kawarabayashi, “Com-
puting personalized pagerank quickly by exploiting graph struc-
tures,” VLDB, vol. 7, no. 12, pp. 1023–1034, 2014.

[20] N. Ohsaka, T. Maehara, and K.-i. Kawarabayashi, “Efficient pager-
ank tracking in evolving networks,” in KDD, 2015, pp. 875–884.

[21] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank
citation ranking: Bringing order to the web.” Stanford InfoLab,
Tech. Rep., 1999.

[22] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization:
algorithms and complexity. Courier Corporation, 1998.

[23] Z. Qin, Y. Yang, T. Yu, I. Khalil, X. Xiao, and K. Ren, “Heavy hitter
estimation over set-valued data with local differential privacy,” in
CCS, 2016, pp. 192–203.

[24] C. Ren, L. Mo, C. Kao, C. Cheng, and D. Cheung, “CLUDE:
An efficient algorithm for LU decomposition over a sequence of
evolving graphs,” in EDBT, 2014.

[25] A. D. Sarma, A. R. Molla, G. Pandurangan, and E. Upfal, “Fast
distributed pagerank computation,” Theoretical Computer Science,
vol. 561, pp. 113–121, 2015.

[26] K. Shin, J. Jung, S. Lee, and U. Kang, “Bear: Block elimination
approach for random walk with restart on large graphs,” in
SIGMOD, 2015, pp. 1571–1585.

[27] J. Tang, J. Sun, C. Wang, and Z. Yang, “Social influence analysis in
large-scale networks,” in KDD, 2009, pp. 807–816.

[28] H. Tong, C. Faloutsos, and Y. Koren, “Fast direction-aware prox-
imity for graph mining,” in KDD, 2007, pp. 747–756.

[29] H. Tong, C. Faloutsos, and J.-Y. Pan, “Fast random walk with
restart and its applications,” 2006.

[30] S. Wang, Y. Tang, X. Xiao, Y. Yang, and Z. Li, “HubPPR: effective
indexing for approximate personalized pagerank,” VLDB, vol. 10,
no. 3, pp. 205–216, 2016.

[31] S. Wang, R. Yang, X. Xiao, Z. Wei, and Y. Yang, “FORA: Simple
and effective approximate single-source personalized pagerank,”
in KDD, 2017, pp. 505–514.

[32] H. Zhang, P. Lofgren, and A. Goel, “Approximate personalized
pagerank on dynamic graphs,” in KDD, 2016, pp. 1315–1324.

[33] F. Zhu, Y. Fang, K. C.-C. Chang, and J. Ying, “Incremental and
accuracy-aware personalized pagerank through scheduled ap-
proximation,” VLDB, vol. 6, no. 6, pp. 481–492, 2013.

Siqiang Luo received the BSc and MS degrees
from Fudan University in 2010 and 2013 respec-
tively. He is a Ph.D. candidate in the Depart-
ment of Computer Science, University of Hong
Kong (HKU) under the supervision of Prof. Ben
Kao and Dr. Reynold Cheng. His research in-
terests are in the areas of adaptive optimization
techniques, spatio-temporal data management,
graph algorithms and parallel computing.

Xiaokui Xiao received the PhD degree in com-
puter science from the Chinese University of
Hong Kong in 2008. He is currently an Associate
Professor at the National University of Singapore
(NUS), Singapore. From 2009 to 2017, he was
a faculty member at the Nanyang Technologi-
cal University (NTU), Singapore. His research
interests include data privacy, spatial databases,
graph databases, and parallel computing. He is
an associate editor of TKDE and VLDBJ.

Wenqing Lin Wenqing Lin received the PhD de-
gree in Computer Science from Nanyang Tech-
nological University in 2015. Currently he is a
Senior Researcher at the Game Data Mining
Center of Tencent, China. His research interests
include data mining, machine learning, and par-
allel computing.

Ben Kao received the BSc degree in computer
science from the University of Hong Kong, in
1989, and the PhD degree in computer science
from Princeton University, in 1995. He is cur-
rently a professor in the Department of Com-
puter Science with the University of Hong Kong.
From 1992 to 1995, he was a research fellow
with Stanford University. His research interests
include database management systems, data
mining, real-time systems, and information re-
trieval systems.

	Introduction
	Preliminaries
	Problem Definition
	Main Competitors
	Other Related Work

	Our Solution
	Lower Bound for One-Hop PPR
	The Baton Method
	Reusing of Random Walks
	Vertex Cover based Optimization
	Multi-Core Parallelization

	Experiments
	Settings
	Performance
	A/B Test for Effectiveness of PPR

	Conclusion
	Proofs
	References
	Biographies
	Siqiang Luo
	Xiaokui Xiao
	Wenqing Lin
	Ben Kao

