
On Minimal Steiner Maximum-Connected
Subgraph Queries

Jiafeng Hu, Xiaowei Wu, Reynold Cheng,Member, IEEE, Siqiang Luo, and Yixiang Fang

Abstract—Given a graphG and a setQ of query nodes, we examine the Steiner Maximum-Connected Subgraph (SMCS) problem.

The SMCS, or G’s induced subgraph that contains Qwith the largest connectivity, can be useful for customer prediction, product

promotion, and team assembling. Despite its importance, the SMCS problem has only been recently studied. Existing solutions

evaluate themaximum SMCS, whose number of nodes is the largest among all the SMCSs of Q. However, the maximum SMCS, which

may contain a lot of nodes, can be difficult to interpret. In this paper, we investigate theminimal SMCS, which is the minimal subgraph of

G with the maximum connectivity containingQ. The minimal SMCS contains much fewer nodes than its maximum counterpart, and is

thus easier to be understood. However, the minimal SMCS can be costly to evaluate. We thus propose efficient Expand-Refine

algorithms, as well as their approximate versions with accuracy guarantees. We further develop a cache-based processing model to

improve the efficiency for an important case when Q consists of a single node. Extensive experiments on large real and synthetic graph

datasets validate the effectiveness and efficiency of our approaches.

Index Terms—Community search, minimal steiner maximum-connected subgraph, k-edge connectivity, subgraph search

Ç

1 INTRODUCTION

GRAPHS are prevalent in various domains, such as social
science, e-commerce, and biology. Given a graph G

and a set Q of nodes, we study the Steiner Maximum-
Connected Subgraph (or SMCS), a subgraph of G with the
maximum connectivity that contains Q. The SMCS can be
used in customer prediction, community search, product
promotion, and team assembling [6]. In a social network
(e.g., Facebook), given a set Q of nodes denoting social net-
work users, its SMCS represents a group of people with sim-
ilar interest. The members of the SMCS found can then be
considered for product recommendation. As another exam-
ple, in a Protein-Protein-Interaction (PPI) network [3], the
SMCS can be used to discover a subgraph connecting
a given set Q of protein nodes; the protein nodes appearing
in the SMCS can have a close relationship. In a bibliographic
network (e.g., DBLP), the SMCS can be used to look for
research communities, in order to facilitate collaboration.
Fig. 1 illustrates an SMCS for the set Q = {“Michael Stone-
braker”, “Samuel Madden”, “Daniel J. Abadi”, “Jennie
Duggan”}, extracted from the DBLP. This SMCS illustrates
the researchers who are related to those specified in Q.

The notion of the SMCS has only been recently studied. In
particular, Chang et al. [6] investigated a variant of the SMCS
(or known as the Steiner Maximum-Connected Component
(SMCC) in [6]), which is the maximum SMCS whose number

of nodes is the largest among all the possible SMCSs. We
have tested the solution provided by [6] on some datasets.
We found that the maximum SMCS has a high cohesiveness
(because its connectivity, or the smallest number of edges
whose removal disconnects it, is maximized). Unfortunately,
the maximum SMCS is often extremely large and complex.
On the DBLP dataset that contains 803 K nodes and 3.2 M
edges, the average number of nodes of a maximum SMCS is
over 400 K. This not only hinders the analysis of the SMCS
structure, but also makes it difficult to be used in real situa-
tions. Suppose that a user wants to set up an academic con-
ference. She has a small budget to invite a few renowned
scholars and their related researchers. To decide the invita-
tion list, the user may issue a maximum SMCS query, withQ
containing the names of several researchers, on DBLP. She
can then contact the researchers (or graph nodes) that appear
in the SMCS. However, if the maximum SMCS is very large,
the user can have a hard time to figure out the appropriate
participants. Is it possible to get a smaller SMCS, while main-
taining themaximum connectivity?

In this paper, we examine the discovery of an SMCS that
has a small number of nodes. Oneway is to evaluate themini-
mum SMCS, whose number of nodes is the smallest among
all the possible SMCSs. However, as we will discuss in
Section 3.2, finding theminimum SMCS is NP-hard. Further-
more, it is NP-hard to get an approximate minimum SMCS
with any constant ratio. Thus, any attempt to obtain a mini-
mum SMCS or its approximate version appears to be a futile
exercise. We study another version of SMCS, called themini-
mal SMCS, which is essentially an SMCS of Q (denoted as
G0), such that any subgraph of G0 containing Q is not an
SMCS of Q. While the minimal SMCS is still challenging
to find, we show that it can be derived in polynomial time.
To our understanding, the evaluation of the minimum and
minimal SMCS’s have not been studied before.

� The authors are with the Department of Computer Science, University of
Hong Kong, Pokfulam Road, Hong Kong.
E-mail: {jhu, xwwu, ckcheng, sqluo, yxfang}@cs.hku.hk.

Manuscript received 18 Oct. 2016; revised 11 July 2017; accepted 13 July
2017. Date of publication 24 July 2017; date of current version 4 Oct. 2017.
(Corresponding author: Jiafeng Hu.)
Recommended for acceptance by K.S. Candan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2017.2730873

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 29, NO. 11, NOVEMBER 2017 2455

1041-4347� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Example 1.1. Fig. 2 illustrates three SMCSs, namely, G1, G2,
and G3, for a graph G and query node set Q ¼ ffg. All
these SMCSs have a maximum connectivity of 3, i.e., at
least 3 edges have to be removed in order to disconnect
them. Here, G3 is the maximum SMCS, since it has the
largest number of nodes, while G2 is the minimum one.
Both G1 and G2 are minimal SMCSs.

Because obtaining the minimum SMCS is computation-
ally intractable, we study the efficient retrieval of the mini-
mal SMCS. One simple way is to first adopt the solution in
[6] to compute the maximum SMCS G0, and then iteratively
refine G0 to ensure its minimality. While this solution is sim-
ple, it has a high complexity, since the cost of testing the
minimality of an SMCS is high (Section 4.2.1). Moreover,
due to the huge size of the maximum SMCS, it is extremely
slow in our experiments (Section 7).

Our Contributions. We have designed a minimal SMCS
solution called the Expand-Refine framework. In the Expand
step, through local expansion of nodes starting from nodes in
Q, we obtain a subgraph G0 of G, which satisfies the require-
ment of an SMCS. Intuitively, we obtain G0 by exploring the
neighboring nodes ofQ until we obtain an SMCS. In theRefine
step, we devise an efficient algorithm that removes nodes
based on the dependence of nodes on their minimal SMCSs.

We further improve the efficiency of solutions by relax-
ing the constraints from two perspectives, namely connec-
tivity and minimality. In the Expand step, we bound the
expansion space (to relax the connectivity); in the Refine
step, we develop an approximation solution with accuracy
guarantees (to relax the minimality).

Moreover, we observe that in many applications, it is
interesting to find the minimal SMCS of a single node (i.e.,
jQj ¼ 1) [16], [22]. For example, in friend recommendation,
a social network user u may request for new friends; the
application can issue a minimal SMCS query with Q ¼ fug.
In e-commerce network systems (e.g., eBay), new products
can be recommended to a user, where a minimal SMCS
query is issued based on the graph node representing the
user. We thus develop a minimal SMCS algorithm custom-
ized to single-node queries. The solution saves the process-
ing information related to the current query in a small cache
structure, and use them to answer the subsequent ones. Our
results show that the single-node solution performs well for
random single-node queries. We further develop an approx-
imate version for this solution.

We have performed a detailed evaluation of our algo-
rithms on large real and synthetic graph datasets. Our exper-
imental results confirm our claim that theminimal SMCS has

a higher “quality” than the maximum SMCS, the k-core
model (GrCon [4]) and the closest k-truss model (LCTC [24]),
in terms of fewer nodes, and higher edge density and con-
nectivity. The efficiency of our newminimal SMCS solutions
addresses several orders of magnitude improvement over
basic solutions. Our customized solution for single-node
SMCS queries demonstrates further improvement in speed.

Organization. We review the related work in Section 2.
Section 3 formulates the SMCS and analyses the minimum
SMCS problem. Section 4 discusses our Expand-Refine solu-
tions. In Section 5, we present our relaxation strategies to
further improve the efficiency. In Section 6, we present our
solutions for single-node minimal SMCS queries. We report
our experimental results in Section 7. Section 8 concludes.

2 RELATED WORK

Our work is related to topics of connectivity, community
search, and cohesive subgraph detection.

Connectivity. The SMCS is a subgraph of Gwith the maxi-
mum edge-connectivity (called connectivity here). The connec-
tivity of a graph G is the minimum number of edges whose
removal disconnects G [20]. Connectivity has been studied
in a wide range of graph-related problems, including net-
work reliability [14], VLSI chip design [29], transportation
planning [5], social networks [37], computational biol-
ogy [34], and cohesive subgraph detection [1], [8]. However,
it has only been recently used to facilitate the search of cohe-
sive subgraphs for a given set of nodes (or SMCS) [6]. In this
paper, we study the SMCS problem extensively.

Community Search.Given a setQ of nodes in a graphG, the
community search problem aims at finding the subgraphs of
G that contains Q. For this problem, various goodness met-
rics have been proposed, including local modularity [12],
minimum degree [4], [16], [33], trussness [22], [24] (the mini-
mum support of an edge in the subgraph, where the support
of an edge is the number of triangles containing it), a-adja-
cency-g-quasi-k-clique [15], quasi-clique [26], query biased
edge density [38], attributed community [18], [19], [23] and
spatial-aware community [17]. These measures are funda-
mentally different from connectivity, and so their solutions
cannot be used to obtain the SMCS.

Moreover, as mentioned in [1], [27], compared with mini-
mum degree and trussness, connectivity is a better cohesive-
ness metric. In particular, the minimum degree only restricts
degrees of nodes in subgraphs without any structure con-
straint [1]. In Fig. 3a, with query node set Q ¼ fa; eg, the
whole graph G will be returned under the minimum degree
metric (where the minimum degree is maximized). However,
under the connectivity metric, a better subgraph G1 in which
all nodes are highly connected will be returned, since the
nodes in G2 are far away from query nodes. As for the truss-
nessmeasure, it can be too restrictive on the triangle structure,

Fig. 1. A minimal SMCS of the DBLP using query Q = {“Michael Stone-
braker”, “Samuel Madden”, “Daniel J. Abadi”, “Jennie Duggan”}.

Fig. 2. The maximum SMCS (G3), minimum SMCS (G2), and minimal
SMCSs (G1 and G2) for query Q = {f}.

2456 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 29, NO. 11, NOVEMBER 2017

which is a local concept, whereas connectivity is more
global [1]. Notice that there is no triangle in bipartite graphs,
e.g., paper-author graphs, online dating graphs, or product-
purchaser graphs. For these graphs, it is better to use connec-
tivity as a goodness metric, since no cohesive subgraphs with
trussness can be found. For example, in Fig. 3b, with query
node set Q ¼ fcg, no subgraph will be returned under truss-
ness metric, because there is no triangle in the subgraph.
On the other hand, the whole graph (with connectivity equal
to 4) is returned under the connectivity metric. Hence, in
this paper, we use connectivity for community search, and
develop solutions for obtaining theminimal SMCS.

Compared with our previous work [21], we make the fol-
lowing significant additions. First, we developed a minimal
SMCS algorithm customized to single-node queries, as well as
an approximation algorithm. Second,we conducted additional
experiments on large real graph datasets to evaluate the cus-
tomized solution for single-node queries and its approximate
version. Third, we performed additional experiments to com-
pare our solutions with two state-of-the-art community search
models, i.e., the closest k-truss community model (LCTC) [24]
and the cohesive k-core communitymodel (GrCon) [4].

Cohesive Subgraph Detection. In recent years, there has been
a lot of work on the retrieval of cohesive subgraphs from a
large graph. Different kinds of cohesive subgraphs have
been studied, such as the maximal clique [7], [10], quasi-
clique [39], k-plex [36], k-core [9], [28], [32], k-truss [13], [35],
and locally densest subgraph [31]. However, these solutions
are inherently different from our problem, in which they are
not query-dependent (i.e., the specification of Q is not
required). Hence, their techniques are inapplicable to com-
puteminimal SMCS.

3 THE SMCS PROBLEM

We will describe the graph model and three types of SMCSs
in Section 3.1. We study the intractability problem of the
minimum SMCS in Section 3.2.

3.1 Connectivity and SMCS
Given an undirected graph G, let V ðGÞ and EðGÞ be its sets
of nodes and edges respectively. We use G½S� ¼ ðS;E½S�Þ to
denote the subgraph of G induced by node set S � V ðGÞ,
where E½S� ¼ fðu; vÞ 2 EðGÞ : u; v 2 Sg. Let NðuÞ be the set
of neighbors of u in G. We denote by Gnu the graph
obtained by removing node u from V ðGÞ. We use component
to refer to a connected component of G.

Definition 3.1 (Connectivity). The connectivity (or edge-
connectivity in [20]) �ðu; vÞ between two distinct nodes u and
v in V ðGÞ is the minimum number of edges whose removal
disconnects u and v. The connectivity of the graph �ðGÞ ¼
minu;v2V ðGÞ�ðu; vÞ is the minimum connectivity between any

two distinct nodes in G (i.e., the smallest number of edges
whose removal disconnects G).

Definition 3.2 (k-Component). A subgraph g of G is a k-
component (or k-edge connected component in [1], [8]) if 1)
�ðgÞ � k; and 2) the connectivity of any super-graph of g in G
is less than k.

Given a set of query nodes Q � V , we use GQ to denote a
node-induced subgraph of G containing Q. We define the
SMCS as follows.

Definition 3.3 (SMCS). The Steiner Maximum-Connected
Subgraph is a subgraph GQ of G such that the connectivity
�ðGQÞ of GQ is maximized.

Let scðQÞ be the connectivity of any SMCS of Q. In [6],
scðQÞ is called the Steiner-connectivity of Q. When Q ¼ fug,
we use scðuÞ to denote scðfugÞ.
Definition 3.4 (Maximum SMCS). An SMCS GQ of Q such

that the number of nodes in GQ is maximized.

The maximum SMCS is also called the Steiner Maximum-
Connected Component in [6]. In our experiments, the maxi-
mum SMCS suffers from having a huge size and low edge
density. Hence, we study the problems of finding other
SMCS alternatives as follows.

Definition 3.5 (Minimum SMCS). An SMCS GQ of Q such
that the number of nodes in GQ is minimized.

Definition 3.6 (Minimal SMCS). An SMCS GQ of Q such
that any proper induced subgraph of GQ containing Q is not an
SMCS of Q.

Note that a minimum SMCS is also a minimal SMCS.
Fig. 2 shows these three kinds of SMCSs. Next, we discuss
the problem of finding the minimum SMCS.

3.2 Intractability of Minimum SMCS

It is easy to observe that the minimum SMCS problem is
APX-hard since it is a generalization of the Steiner tree

problem: given any subset of nodes S inGðV;EÞ, a minimum
subgraph spanning all nodes in S can be found by comput-
ing a minimum SMCS of S [fug inGðV [fug; E [fðs; uÞgÞ,
where s 2 S and u =2 V . Note that although the objectives are
slightly different (one aims at minimizing the number of
edges while the other aims at minimizing the number of
nodes), we can create dummy nodes within each edge to
make the two objectives arbitrarily close. Since the Steiner
tree problem is APX-hard, the minimum SMCS is also
APX-hard. We further show in the following that the prob-
lem does not admit any constant approximation ratio, even
when restricted to the case when jQj ¼ 1. The reduction from
vertex cover problem is a modification of the hardness
proof of the MSMD3 problem in [2]. The detailed proof of
Theorem 3.1 can be found in our previouswork [21].

Theorem 3.1 (Inapproximability). Unless P ¼ NP, there
does not exist any polynomial-time algorithm that approxi-
mates the minimum SMCS problem within any constant ratio.

Theorem 3.1 states that it is not only intractable to obtain
a minimum SMCS, but also hard to get its approximate ver-
sion in an accurate manner. Hence, we focus on the minimal
SMCS, which although may be larger than the minimum
SMCS, can be found in polynomial time.

Fig. 3. (a) An ill-connected graph that minimum degree fails to separate
for query Q = {a, e}. (b) A well-connected bipartite graph that cannot be
found with trussness [1] for query Q = {c}.

HU ETAL.: ON MINIMAL STEINER MAXIMUM-CONNECTED SUBGRAPH QUERIES 2457

4 PROCESSING MINIMAL SMCS

We now examine how to find a minimal SMCS from G
efficiently. Let us first present our Expand-Refine framework.
As shown in Algorithm 1, it contains three steps. First, we
compute the Steiner-connectivity scðQÞ of the query node
set Q. We then perform Expand (line 2) to generate an
SMCS of Q, which serves as a candidate of the minimal
SMCS. We then execute Refine (line 3) on the SMCS
returned by line 2. This operation removes selected nodes
and returns a minimal SMCS of Q.

Algorithm 1. Expand-Refine(G, Q)

1 Compute the Steiner-connectivity scðQÞ of Q;
2 H ExpandððVscðQÞ; EscðQÞÞ; Q; scðQÞÞ;
3 HQ RefineðG½H�; Q; scðQÞÞ;
4 returnHQ;

Step 1: Find scðQÞ. An efficient algorithm for obtaining
scðQÞ has been proposed in [6]. The solution is based on the
connectivity graph. Let us use scðu; vÞ to denote scðfu; vgÞ. If
ðu; vÞ 2 E, then scðu; vÞ is the maximum connectivity of any
graph containing edge ðu; vÞ.
Definition 4.1 (Connectivity Graph [6]). Given a graph

G ¼ ðV;EÞ, the connectivity graph of G is a weighted undi-
rected graph Gc ¼ ðV;E;wÞ with the same set of nodes and
edges as G. Each edge ðu; vÞ in Gc has a weight wðu; vÞ equal to
the Steiner-connectivity scðu; vÞ of fu; vg in G.

An efficient algorithm was proposed in [6] to computeGc

in OðaðGÞ � h � l � jEjÞ time, where aðGÞ is the “arboricity” of
G and is bounded by (usually much smaller than)

ffiffiffiffiffiffiffijEjp

[11],
and h and l are usually bounded by small constants for real
graphs [8]. Based on Gc, [6] developed an OðjQjÞ algorithm
to compute the Steiner-connectivity scðQÞ. For a single node
u, its Steiner-connectivity is scðuÞ ¼ maxv2NðuÞscðu; vÞ, i.e.,
themaximumweight among all edges adjacent to u inGc.

From now on, we assume that Gc has been computed.
Thus, the scðu; vÞ and scðuÞ values for every edge ðu; vÞ 2 E
and node u 2 V are readily known. In the rest of this sec-
tion, we will explain the details of Expand (Section 4.1) and
Refine (Section 4.2).

4.1 The Expand Operation (Algorithm 1, Step 2)
The goal of this step is to return a candidate for minimal
SMCS of Q. In fact, any SMCS of Q can be a candidate,
and one simple way is to obtain the maximum SMCS,
using the solution provided by [6]. However, as we will
show in our experiments, the maximum SMCS computed
can be extremely large. If the maximum SMCS of Q is
returned in this step, the efficiency of Refine (Step 3 of
Algorithm 1) can be seriously affected - a huge number
of nodes have to be removed before we can get the mini-
mal SMCS of Q. We next present a better method that
generates a smaller SMCS of Q efficiently. To start with,
let us present the notion of layer.

Definition 4.2 (Layer). For all k � 1, let Vk ¼ fu 2 V :
scðuÞ � kg and Ek ¼ fðu; vÞ 2 E : scðu; vÞ � kg. We call
Gk ¼ ðVk; EkÞ the kth layer of graph G.

Given an integer k,Gk can be obtained easily.We first com-
pute Ek, which contains all the edges in Gc whose sc values
are higher than k. Then, the set Vk is simply the set of nodes
induced byEk.We have developed a useful lemma forGk.

Lemma 4.1. For all k � 1, each component of the kth layer
Gk ¼ ðVk; EkÞ is k-connected.

Proof. By definition, we know that for any edge ðu; vÞ in the
component G0 of ðVk; EkÞ, there must exists a subgraph
Guv of G

0 containing ðu; vÞ that is k-connected. Hence any
two adjacent nodes in G0 are k-connected, implying that
G0 is k-connected. tu
We now describe our local expansion strategy, which finds

a subgraph of G containing Q that is scðQÞ-connected. Let
k ¼ scðQÞ be obtained in Step 1 of Algorithm 1. Given the
kth layer Gk=ðVk; EkÞ and a set Q of query nodes, Algo-
rithm 2 computes an SMCS of Q by performing a local
search on Gk. Particularly, we first form a Steiner tree on the
graph Gk to connect all query nodes (line 2). Since the
Steiner tree problem is NP-hard, a well-known 2-approxi-
mation algorithm [30] is adopted to construct the Steiner
tree. We then iteratively expand the candidate node set S by
involving the local neighbors of the query nodes in a
breadth-first-search manner and invoke ComputeKECC to
test whether there exists a k-component containing Q in
G½S�, until a valid SMCS of Q is found (lines 3-6). Here,
function ComputeKECC returns the node set of that compo-
nent if it exists, or an empty set otherwise (line 6). To imple-
ment this function, we first invoke the best k-component
algorithm, called KECCs-Exact [8], which returns all the
k-components of Gk½S� in Oðh � l � jEjÞ time, where h and l
are usually bounded by small constants.

Algorithm 2. Expand(Gk, Q, k)

Input: A graph Gk ¼ ðVk; EkÞ, a set Q of query nodes, and the
Steiner-connectivity k of Q

Output: The node set of an SMCS of Q
1 S ;,H ;;
2 Compute a Steiner Tree S from Gk containing Q;
3 whileH ¼ ; do
4 pick u 2 S closest to Q such thatNðuÞ ~ S;
5 S S [NðuÞ;
6 H ComputeKECC(Gk½S�; Q; k);
7 returnH;

Then ComputeKECC returns the k-component that con-
tains Q. For convenience, we use M ¼ Oðh � l � jEjÞ to denote
the time complexity of ComputeKECC.

Algorithm 2 always returns an SMCS of Q, since in
the worst case, the maximum SMCS will be returned. In
our experiments, the number of nodes in SMCSs
returned is much smaller than that of their maximum
counterparts.

4.2 The Refine Operation (Algorithm 1, Step 3)

After obtaining an SMCS G½H� of Q with scðQÞ = k in
Step 2, we need to check its minimality, i.e., any sub-
graph induced by a proper subset of H is not an SMCS
of Q. However, since there are 2jHj�jQj possible induced
subgraphs of H containing Q, examining all possible
subgraphs is not feasible. To validate the minimality of
the SMCS, we first describe a basic refinement algorithm
in Section 4.2.1, and then propose a better solution in
Section 4.2.2. To further improve the efficiency, we intro-
duce the incremental removal optimization technique in
Section 4.2.3.

2458 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 29, NO. 11, NOVEMBER 2017

4.2.1 Basic Refinement

If G½H� is not minimal, then there must exist a subgraph
G½HQ�, whereHQ | H, Q � HQ and �ðG½HQ�Þ ¼ k, i.e., there
exists a k-component containing Q if any node in HnHQ is
removed. Based on this intuition, we develop the Refine-

Basic Algorithm. Each node in HnQ is tested iteratively. If
a smaller SMCS is found, we shrink the candidate set and
recursively call Refine-Basic to find a minimal SMCS.
The node set H of a minimal SMCS will be returned if there
does not exist a k-component containing Q when any node
inHnQ is removed.

Theorem 4.1. Refine-Basic returns a minimal SMCS ofQ in
OðjHj2MÞ time.

Please refer to our previous work [21] for the proof.

4.2.2 Advanced Refinement

We now explain how to use the relationship between nodes
to speed up the refinement step.

Definition 4.3 (Separable). Given any SMCS G½H� of a set Q
of nodes, node u 2 HnQ is separable for Q if there exists an
scðQÞ-component containing Q in G½H�nu.

Lemma 4.2. Given any SMCS G½H� of a set Q of nodes, if
u 2 HnQ is non-separable for Q, then any SMCS of Q that is a
subgraph of G½H� must contain u.

Please refer to our previous work [21] for the proof.
Given an SMCS G½H� of Q, Algorithm 3 computes a mini-

mal SMCS of Q by repeatedly removing separable nodes
from the SMCS.We initialize T as the set of nodeswhose sep-
arabilities are not yet tested (line 1). Then in every round we
test the separability of a node u 2 T (lines 2-8). If u is non-
separable, it will be removed from T (line 6); otherwise it is
separable, then we can shrink H to a proper subset H 0zH
that does not contain u and update T (line 8). Note that we
can remove at least one node from T in each step and when
T is empty, all nodes except those in Q in the current SMCS
must be non-separable, which ensures theminimality.

Theorem 4.2 (Minimal-SMCS). Given an SMCS G½H� of a
set Q of nodes, Refine(G½H�; Q; k) computes a minimal
SMCS of Q that is a subgraph of G½H� in Oðt �MÞ time, where
t is the number of iterations ðt < jHjÞ.
Please refer to our previous work [21] for the proof.

Given the above algorithms, a minimal SMCS of Q can be
computed by calling Algorithm 1 with inputs G and Q.

Algorithm 3. Refine(G½H�, Q, k)

1 T HnQ;
2 while T 6¼ ; do
3 pick a node u 2 T ;
4 H 0 ComputeKECC(G½H�nu;Q; k);
5 ifH 0 ¼ ; then /* u is non-separable */
6 T Tnu;
7 else /* G½H 0� is an SMCS of Q */

8 H H 0, T T \H 0;
9 returnH;

4.2.3 Incremental Removal Optimization

Note that given an SMCS G½H� of a set Q of query nodes
with scðQÞ ¼ k, in the refinement step, we identify the

separability of a sample node in each iteration. If the sam-
pled node u is separable, then all nodes not contained in the
k-component containing Q in G½H�nu are separable. How-
ever, in some cases, especially when k is small, every time
when a separable node is identified, we can only reduce the
size of SMCS by a small constant, which is inefficient when
the candidate SMCS is large.

One observation is, for any subset U � HnQ, if there
exists a k-component containing Q after removing U from
G½H�, then we can identify all nodes in U separable immedi-
ately. Using this idea, we develop an incremental removal
optimization for the refinement algorithm, as shown in
Algorithm 4. The key idea is that we try to sample a set of
nodes in each iteration. Let i denote the number of nodes to
be sampled, initialized to 1 (line 2). After one successful
removal during the iteration procedure (a k-component con-
taining Q is found after removing U), the sample size i will
be increased by 1 (line 12). When it meets an unsuccessful
removal (there does not exist a k-component containing Q
after removing U), if the size of U is 1, the only element in U
will be removed from T since it is non-separable (line 8);
otherwise, the sample size i will be reset to 1 (line 10). Note
that in the second case, the nodes in U cannot be labeled as
non-separable, even though we know one of them is.

Algorithm 4. Refine-Inc(G½H�, Q, k)

1 T HnQ;
2 i 1;
3 while T 6¼ ; do
4 i minði; jT jÞ;
5 sample i nodes U from T ;
6 H 0 ComputeKECC(G½HnU �; Q; k);
7 ifH 0 ¼ ; and i ¼ 1 then
8 T TnU ;
9 else ifH 0 ¼ ; and i > 1 then
10 i 1;
11 else
12 H H 0, T T \H 0, i iþ 1;
13 returnH;

5 IMPROVING PERFORMANCE BY CONSTRAINT

RELAXATION

In this section, we focus on improving the efficiency of
our Expand-Refine algorithm in two ways. First, for the
Expand operation, we constrain the local search space while
relaxing the connectivity. Second, for the Refine operation,
we propose an approximation algorithm to speed up the
refinement procedure with accuracy guarantee.

5.1 Early Stop in the Expand Step

As described in Section 4.1, in the Expand step, we locally
expand the Steiner tree S to find an SMCS of Q. However,
since the local expansion is a heuristic search strategy, the
time cost may be very high in some cases, especially
when the graph size is very large. In order to reduce the
search space, we use a threshold u to bound the size of S,
so called early stop. Specifically, in the Bounded-Expand

Algorithm, after obtaining the Steiner tree S for the query
nodes, we expand the tree S to a graph in a BFS manner

HU ETAL.: ON MINIMAL STEINER MAXIMUM-CONNECTED SUBGRAPH QUERIES 2459

until the node size exceeds a threshold u, i.e., jSj > u,
where u is empirically tuned. Then we extract a k0-compo-
nent H containing Q in Gk½S�, where k0 � k is the maxi-
mum possible connectivity. Following that, we may get a
candidate subgraph with connectivity less than the
Steiner-connectivity of Q. However, as we will show in
Section 7.3, the connectivity k0 of the subgraph returned
by Bounded-Expand is very close to the corresponding
maximum one in practice.

5.2 Approximation in the Refine Step
Note that to ensure an SMCS graph G½H� of a set Q of
nodes is minimal, we need to test separability for each
node u 2 HnQ, which takes VðjHj �MÞ time in the worst
case. For a large k, usually we have a large minimal SMCS,
which leads to long processing time. To further improve
the efficiency of the refinement procedure, we propose an
approximation algorithm which incorporates two extra
user-specified parameters into the input, i.e., the approxi-
mation ratio r and the failure probability d. The approxi-
mation algorithm stops earlier and outputs with
probability at least ð1� dÞ an SMCS of Q that is an
r-approximation of a minimal SMCS of Q, for any constant
d 2 ð0; 1Þ and r > 1. Note that an SMCS G½H� of Q is an
r-approximation if there exists HQ � H such that
jHQj � 1

r jHj and G½HQ� is a minimal SMCS of Q. The failure
probability d is defined as the probability that the approxi-
mation ratio is larger than r.

The pseudocode of the approximation method is shown
in Algorithm 5. Different from Algorithm 3, we maintain
an extra variable, i.e., the number of non-separable nodes
sampled consecutively, denoted as step. At first, the value
of step is initialized to 0 (line 2). In each iteration of the algo-
rithm, we sample a node u from T uniformly at random
(line 4) and test its separability (lines 5-9). If u is non-separa-
ble (line 6), then it will be removed from T and the value of
step will be increased by 1 (line 7); otherwise we can shrink
H to the k-component containing Q in G½H�nu, update T
and reset the value of step to 0 (line 9). The iteration will be

halted when the value of step is not less than v ¼ dlog 1
d

log re or T
is empty. Lemma 5.1 shows that our approximation algo-
rithm outputs an r-approximation of a minimal SMCS of Q
in G½H� with probability at least ð1� dÞ. Please refer to our
previous work [21] for the proof and detailed examples.

Algorithm 5. Approx-Refine(G½H�, Q, k, r, d)

1 T HnQ, v ¼ dlog 1
d

log re;
2 step 0;
3 while step < v and T 6¼ ; do
4 sample uniformly at random a node u 2 T ;
5 H 0 ComputeKECC(G½H�nu;Q; k);
6 ifH 0 ¼ ; then
7 T Tnu, step stepþ 1;
8 else
9 H H 0, T T \H 0, step 0;
10 returnH;

Lemma 5.1 (Approximate Minimal SMCS). Given an
SMCS G½H� of a set Q of nodes, for any constant d 2 ð0; 1Þ
and r > 1, Algorithm 5 returns an r-approximation of a mini-
mal SMCS of Q in G½H� with probability at least ð1� dÞ.

The incremental removal optimization can also be used in
the approximation algorithm. We call it Approx-Refine-

Inc algorithm. The main idea is similar to Algorithm 4.
Whenever we sample a separable node, the sample size i
is increased by 1, otherwise it will be set to 1. Since our algo-
rithm stops only when v consecutive non-separable nodes
are sampled (which means the sample size is always 1),
Lemma 5.1 still holds for the Approx-Refine-Inc algorithm.

6 OPTIMIZING SINGLE-NODE QUERIES

Inmany applications, like friend recommendation on social net-
works (e.g., Facebook), product promotion on e-commerce net-
works (e.g., eBay), etc., single-node minimal SMCS queries
(jQj ¼ 1) account for a large proportion among all queries.
In the meantime, a large number of queries will be frequently
triggered in those applications. In order to speed up single-
node minimal SMCS queries, we discuss in this section how to
utilize the minimal SMCSs returned for future queries. In Sec-
tion 6.1, we propose a cache-based processingmodel for single-
node queries. Then, in Section 6.2, we adopt the approximation
technique introduced in Section 5.2 to the cache-based process-
ingmodel to further improve the efficiency.

6.1 Cache-Based Processing Model
Although the minimal SMCS for each query node can be
totally different, if we have already computed the minimal
SMCS G½Hu� for node u, then for all nodes in Hu with the
same Steiner-connectivity as u, G½Hu� which is expected to
be small, can be taken as a candidate SMCS. Based on this
property, we propose a cache-based processing model for
single-node queries to further improve the efficiency.

Algorithm 6. Cache-Minimal-SMCS(G)

1 compute the connectivity graph of G;
2 for all u 2 V , min-smcsðuÞ NULL;
3 for each single-node query Q ¼ fug do
4 if min-smcsðuÞ 6¼ NULL then
5 output min-smcsðuÞ;
6 else
7 H Expand(ðVk; EkÞ, u, scðuÞ);
8 outputHu Refine(G½H�, u, scðuÞ)
9 min-smcsðuÞ G½Hu�;
10 if jHuj � h then
11 SðHuÞ fv 2 Hu :

min-smcsðvÞ = NULL; scðvÞ ¼ scðuÞg;
12 Find-Minimal(G½Hu�, SðHuÞ,Hu, scðuÞ);

*/ details in Section 6.1.2 */

Our cache-based processing model is outlined in
Algorithm 6. The key idea is as follows. The algorithmmain-
tains a pointer min-smcs for each node u 2 V , which points
to a minimal SMCS of u if its minimal SMCS has been calcu-
lated, or NULL otherwise (all pointers are initialized to NULL
at the beginning (line 2)). When a single-node queryQ ¼ fug
arrives, we first check whether the pointer min-smcs(u) is
NULL or not. If min-smcs(u) 6¼ NULL, then the minimal
SMCS pointed to by min-smcs(u) will be returned directly
(line 5). Otherwise, following steps will be executed:

1) calculate the minimal SMCS G½Hu� of u using
Algorithm 1 introduced in Section 4 (lines 7-8);

2) update min-smcs(u) to G½Hu� (line 9);
3) if the size ofHu is no larger than a threshold h, then:

2460 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 29, NO. 11, NOVEMBER 2017

a) extract all nodes inHu with Steiner-connectivity the
same as u andwhoseminimal SMCSs have not been
computed yet, stored into the setSðHuÞ (line 11);

b) invoke Find-Minimal procedure to compute
minimal SMCSs for all nodes in SðHuÞ (line 12).

Here, the threshold h is used to balance the query time and
the effectiveness of caching. The value of h is empirically
tuned. Compared with previous algorithms on processing a
query on node u, after computing the minimal SMCS G½Hu�,
Algorithm 6 further computes a minimal SMCS for each node
v 2 Hu with scðvÞ ¼ scðuÞ and does not have aminimal SMCS
yet (all these nodes are stored into a set SðHuÞ). Although
G½Hu� is a minimal SMCS of u, it might not be a minimal
SMCS for each node v 2 SðHuÞ, whichmeans a further refine-
ment step is needed. However, since G½Hu� is expected to be
small, the refinement is expected to bemuch faster.

Example 6.1. As shown in Fig. 4a, suppose the query
Q ¼ fag and it is the first query (all pointers are initialized
to NULL as shown in Fig. 4c). Algorithm 6 will returnG1 as
a minimal SMCS of node a and set min-smcs(a) to G1.
Assuming that the threshold h � jHuj, then we select all
nodes in V ðG1Þ with the Steiner-connectivity being 4 and
min-smcs being NULL, i.e., SðHuÞ = fb; c; e; f; g; hg. Here
the Steiner-connectivities of all nodes are shown in Fig. 4b.
Finally, after calling Find-Minimal(G1; SðHuÞ; V ðG1Þ;
4), the minimal SMCSs for all nodes in SðHuÞ will be com-
puted, as shown in Fig. 4d.

Suppose that the average query time (lines 4-12) is ttotal, the
average computation time of the cache part (lines 11-12) is
tcache and the average number of nodes cached during each
query is N cached (the average size of SðHuÞ). In our experi-
ments, the extra cost for caching, tcache, is a negligible portion
of the total query time ttotal. Moreover, the amortized time

tamort ¼ ttotal
N cached

, which is the expected average query time for

future queries, is much smaller than the average query time
of those algorithmswithout caching.

In the following, we will describe the Find-Minimal

procedure in detail. First, in Section 6.1.1, we introduce the
main component of the Find-Minimal procedure, named
Test-Minimal, which is used for testing the minimality
for a group of nodes. Based on that, we illustrate a subtle
algorithm, Find-Minimal, which can find a minimal
SMCS for each node in a group of nodes in Section 6.1.2.

6.1.1 Testing Minimality for a Group of Nodes

Given an SMCS G½H� of a node u 2 H such that scðuÞ ¼ k, to
test whether G½H� is a minimal SMCS of u, we need to either
(1) find a k-connected proper induced subgraph of G½H�
containing u, or (2) show that any proper induced subgraph
of G½H� containing u is not k-connected. In the second case,
for each node v 2 H, we need to test its separability, i.e.,
compute the k-components of the graph obtained by remov-
ing v. Hence testing minimality for an SMCS G½H� of a node
u requires at least VðjHj �MÞ time.

Algorithm 7. Test-Minimal(G½H�, S, T , k)
Input: A graph G½H�, a set S � H, a set T of nodes whose

separabilities are not tested, k ¼ �ðG½H�Þ
Output: A set KCC of k-connected node disjoint subgraphs

of G½H� containing some nodes in S and a set T of
nodes whose separabilities are not tested

1 while T 6¼ ; do
2 pick a node u 2 T , T Tnu;
3 KCC getComponentsðG½H�nu; k; SÞ;
4 if KCC 6¼ ; then
5 return ðKCC; T Þ;
6 return ð;; ;Þ;
7 procedure getComponentsðG; k; SÞ
8 fk ComputeKECCsðG; kÞ;
9 KCC ;;
10 for each k-component G½C� 2 fk do
11 if C \ S 6¼ ; then
12 KCC KCC [fCg;
13 return KCC

To speed up the computation, we do the minimality
testing for a group of nodes S with the same Steiner-connec-
tivity simultaneously as follows. We outline the minimality
testing algorithm in Algorithm 7. Specifically, let T be
the set of nodes in H whose separabilities are not tested.
We repeatedly pick a node u 2 T (line 2) and test its separa-
bility for all nodes in S simultaneously by computing the
k-components of G½H�nu that contains at least one node in S
(line 3). If any k-component G½C� is returned, then we know
that u is separable for all nodes in C \ S and hence G½H� is
not a minimal SMCS for nodes in C \ S. Otherwise, we can
conclude that u is non-separable for all nodes in Snu.
Lemma 6.1. Given a graph G½H� and a set S � H of nodes such

that for all u 2 S, scðuÞ ¼ �ðG½H�Þ ¼ k, Test-Minimal

ðG½H�; S;H; kÞ returns:
� ð;; ;Þ if G½H� is a minimal SMCS for all v 2 S; or
� ðKCC; T Þ, where KCC is the k-connected node disjoint

subgraphs of G½H� containing some nodes in S and T
is the nodes whose separabilities are not tested.

The algorithm runs in Oðt �MÞ time, where t ¼ jHnT j.
Proof. First, if for each node v 2 S, G½H� is a minimal SMCS

of v, then there will be no k-component containing v in the
graph obtained by removing any arbitrary node fromG½H�
(otherwiseG½H� is not minimal for v). Hence we know that
in this case, in Test-Minimal(G½H�, S, H, k), all nodes in
H must be non-separable and ð;; ;Þwill be returned.

Now suppose that there exists v 2 S such that G½H� is
not a minimal SMCS of v. Let Gv, which must be k-con-
nected, be the minimal SMCS of v such thatGv is a proper
induced subgraph of G½H�. Then all nodes w 2 HnV ðGvÞ

Fig. 4. An example for the cache-based algorithm.

HU ETAL.: ON MINIMAL STEINER MAXIMUM-CONNECTED SUBGRAPH QUERIES 2461

are separable for v. Hence when w 2 HnV ðGvÞ is picked,
the k-component containing v must be contained in KCC
because it is k-connected and contains v 2 S.

Since one node in T will be removed in each iteration
and the running time of each iteration is bounded byOðMÞ,
if t nodes are removed fromT eventually, then the total run-
ning time of the algorithm is upper bounded byOðt �MÞ. tu

6.1.2 Finding Minimal SMCSs for a Group of Nodes

Based on Algorithm 7 for testing minimality, Algorithm 8
computes a pointer min-smcsðuÞ for each node u 2 S that
points to a minimal SMCS of u, where T is a set of nodes
in H whose separabilities are not tested. All pointers are
initialized NULL. At first, we invoke Test-Minimal to do
minimality testing (line 1). If G½H� passes the minimality
testing, we set min-smcsðuÞ to G½H� for all u 2 S (lines 2-4).
Otherwise, G½H� is not minimal SMCS for some u 2 S, and a
collection KCC of k-components will be returned. Hence we
can recursively compute the minimal SMCS within each
component in KCC (lines 6-8). If not all nodes of S are
contained in components of KCC, then we need to compute
the minimal SMCSs within G½H� for those nodes (line 10).
However, since all previously sampled nodes in Test-

Minimal are non-separable for them, we only need to sam-
ple from the nodes T 0 that has not been sampled yet.

Lemma 6.2. At the end of Find-MinimalðG½H�; S;H; kÞ, for
all u 2 S, min-smcsðuÞ points to a minimal SMCS of u. The
algorithm runs in Oðc � jHj �MÞ time, where c is the maximum
depth of recursive calls of Find-Minimal in line 7.

Proof. Correctness. First it is easy to observe that whenever
we set min-smcsðuÞ to G½H� for u 2 S, we must have
ð;; ;Þ ¼ Test-MinimalðG½H�; S; T; kÞ, which by Lemma 6.1
means that G½H� is a minimal SMCS of u.

Running Time. Note that the main running time of
Find-Minimal comes from the calls of ComputeKECCs,
which can be done in OðMÞ time. Since each call of the
function ComputeKECCs is associated with a node u
picked from T in Test-Minimal, we can charge the run-
ning timeM of ComputeKECCsðG½H�nu; k; SÞ to node u.

Since in each level of recursive call of Find-Minimal,
each node in H will be charged at most once, we con-
clude that the total running time of Algorithm 8 is upper
bounded byOðc � jHj �MÞ, where c is the maximum depth
of recursive calls of Find-Minimal in line 7. tu

Algorithm 8. Find-Minimal(G½H�, S, T , k)
1 ðKCC; T 0Þ Test-MinimalðG½H�; S; T; kÞ;
2 if KCC ¼ ; then
3 for each u 2 S do
4 min-smcsðuÞ G½H�;
5 else
6 for each C 2 KCC do
7 Find-MinimalðG½C�; S \ C; T 0 \ C; kÞ;
8 S SnC;
9 if S 6¼ ; then
10 Find-MinimalðG½H�; S; T 0; kÞ;

6.1.3 Incremental Removal Optimization

The previous idea of incremental sampling in Algorithm 4
can also be applied to the computation of minimal SMCSs

for a group of nodes. In Algorithm 8, whenever we sample
a node u 2 T and compute KCC of G½H�nu, u is separable
for all nodes in S that are contained in components of KCC,
which means that we can increment the sample size by 1 in
the recursive calls on components of KCC (line 7). For exam-
ple, if we sample i nodes from T and KCC 6¼ ; is the
k-components containing nodes in S, then in each recursive
call on component in KCC, iþ 1 nodes will be sampled. For
the nodes of S not contained in KCC, we reset the sample
size to 1 in the recursive call in line 10, while keeping those
i sampled nodes in T .

6.2 Cache-Based Approximation Processing
Based on our previous algorithm (Algorithm 5) for com-
puting an approximation of minimal SMCS, we consider in
this section how to cache on approximate minimal SMCS
solutions. In the following, we fix some global variables that
can be accessed by all algorithms: let r be the approximation
ratio and d be the failure probability; the pointer approx-
min-smcs is used to record the approximate minimal
SMCS, instead of min-smcs used in Section 6.1.

Algorithm 9 takes a graph G½H�, a set S � H of nodes
with the same Steiner-connectivity k, a set T � H of nodes
to be sampled, the Steiner-connectivity k and the number
step of consecutive successful tests as the input, returns (1)
ð;; ;Þ if for each v 2 S, with probability ð1� dÞ, G½H� is an
r-approximation of a minimal SMCS of v; or (2) ðKCC; T Þ,
where KCC is a collection of k-components such that each
of them contains some node in S, and T is the set of nodes
not sampled yet.

Given Algorithm 9 for testing approximate minimal
SMCS, Algorithm 10 finds an r-approximation of minimal
SMCS for each node with probability at least ð1� dÞ.

Algorithm 9. Approx-Test-Minimal(G½H�; S; T; k; step)
1 while T 6¼ ; and step < v do
2 sample a node u 2 T uniformly at random, T Tnu;
3 KCC getComponentsðG½H�nu; k; SÞ;
4 if KCC 6¼ ; then
5 return ðKCC; T; stepÞ;
6 else
7 step stepþ 1;
8 return ð;; ;; stepÞ;

Algorithm 10. Approx-Find-Minimal(G½H�; S; T; k; step)
1 ðKCC; T 0; step0Þ
Approx-Test-MinimalðG½H�; S; T; k; stepÞ;

2 if KCC ¼ ; then
3 for each u 2 S do
4 approx-min-smcsðuÞ G½H�;
5 else
6 for each C 2 KCC do
7 Approx-Find-MinimalðG½C�; S \ C; T 0 \ C; k; 0Þ;
8 S SnC;
9 if S 6¼ ; then
10 Approx-Find-MinimalðG½H�; S; T 0; k; step0Þ;

Since whenever we set approx-min-smcsðuÞ ¼ G½H�,
we must have sampled v consecutive nodes non-separable
for u in G½H�, we have the following lemma.

2462 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 29, NO. 11, NOVEMBER 2017

Lemma 6.3.When Approx-Find-MinimalðG½H�; S;H; k; 0Þ
terminates, for each node u 2 S, with probability ð1� dÞ,
approx-min-smcsðuÞ points to an r-approximation of a
minimal SMCS of u.

Proof. By Lemma 5.1, it suffices to prove that whenever we
set approx-min-smcsðuÞ ¼ G½H�, we must have sam-
pled v consecutive nodes non-separable for u in G½H�.

Notice that step is the number of non-separable nodes
that are consecutively sampled for each node u 2 S, since
the value of step is increased by 1 if and only if a non-
separable node for u is detected. Whenever we sampled a
node separable for any u 2 S, we find a k-component
C 2 KCC containing u. When Approx-Find-Minimal

ðG½C�; S \ C;T 0 \ C; k; 0Þ is called (line 7), we reset step to 0.
Hence when KCC ¼ ;, we can claim that either (1) T ¼ ;,

which means G½H� contains only non-separable nodes and
is a minimal SMCS for all nodes in S; or (2) step � v, which
means wemust have consecutively sampled at least v non-
separable nodes for all nodes u 2 S inG½H�. tu

7 EXPERIMENTAL RESULTS

Data. We use six large real graph datasets: (1) ca-CondMat, or
condensed matter collaboration network; (2) soc-Epinions1,
the who-trusts-whom network of Epinions.com; (3) DBLP,
a bibliographic network1; (4)wiki-Talk, a Wikipedia talk (com-
munication) network; (5) as-Skitter, the Internet topology; and
(6) uk-2002, the Web graph within the .uk domain in 2002.2

Apart from DBLP and uk-2002, the datasets are downloaded
from the Stanford SNAP library.3 In addition, we generate 5
synthetic graphs using an open-sourced benchmark graph
generator [25].4

For each dataset, we use its largest connected component
as our test graph. Their number of nodes and edges, average
degree d, and the largest Steiner-connectivity scmax, are
reported in Table 1.

Queries. The node setQ of a query is randomly generated,
based on query size jQj and the inter-distance l (i.e., the
maximum distance between any two nodes in Q). For
instance, a value of l ¼ 2 means that all query nodes are
within distance 2 to each other. By default, jQj ¼ 3 and
l ¼ 2. These values are also used in [24], [33]. For testing the

effect of the Steiner-connectivity, we use a slightly different
query model, as detailed in Section 7.2.

Algorithms.We tested several minimal SMCS solutions:

� Basic: Based on Expand-Refine (Algorithm 1), but
compute maximum SMCS in line 2, and replace line
3 by Refine-Basic (Section 4.2.1).

� ER: Algorithm 1.
� IncER: Algorithm 1with incremental removal optimi-

zation, i.e., replace line 3 byRefine-Inc (Algorithm4).
� AppIncERv: Approximate Expand-Refine with in-

cremental removal optimization, i.e., in Algorithm 1,
replace line 3 by Approx-Refine-Inc (Section 5.2).

Here v=dlog 1
d

log re is the termination threshold, i.e.,

AppIncERv stops after v non-separable nodes are
sampled.

� AppIncBER v: AppIncERv with bounded local search,
i.e., in Algorithm 1, replace line 2 by Bounded-

Expand (Section 5.1) and line 3 by Approx-Refine-

Inc (Section 5.2). We set the local expansion threshold
u ¼ 10;000, which is selected to achieve stable quality
and efficiency by testing u in [1,000, 20,000] (Exp-6 in
Section 7.3).

To examine the effectiveness of our solutions, we have also
implemented the following algorithms:

� max-SMCS: the algorithm proposed in [6], which
finds the maximum SMCS of Q.

� local-SMCS: this uses local expansion (Algorithm 2)
to generate an SMCS ofQ, without any refinement.

� LCTC: the algorithm proposed in [24], which finds
the closest k-truss community of Q.

� GrCon: the algorithm proposed in [4],5 which finds a
k-core community of Qwith small size.

We also study the cache-based algorithms:

� IncCache: Algorithm 6 with incremental removal
optimization, replace line 8 by Refine-Inc (Algo-
rithm 4) and line 12 by Find-Minimal (Algorithm 8)
with incremental removal optimization (Section 6.1.3).

� AppIncCache v: Approximate cache-based algo-
rithm with incremental removal optimization, i.e., in
Algorithm 6, replace line 8 by Approx-Refine-Inc

(Section 5.2) and line 12 by Approx-Find-Minimal

(Algorithm 10).
For the parameter v used in approximation algorithms,

we found that v = 3 balances the running time, approxima-
tion ratio and failure probability (details in Section 7.3). We
thus set its default value to 3.

The above algorithms are implemented in C++ and com-
piledwith GNU g++ 4.6.3 with the -O3 optimization except for
GrCon which is implemented in Java. The source codes for
computing k-components (ComputeKECC), constructing the
connectivity graph, and computing the Steiner-connectivity
and the maximum SMCS are obtained from the authors in [6],
[8]. The source codes of both LCTC (binary version) andGrCon
are obtained from the authors in [24] and [4] respectively. Our
experiments are conducted on amachinewith an Intel(R) Xeon
(R) CPU@2.6GHz and 96GBmemory running Linux.

Next, we examine the effectiveness and efficiency of SMCS
solutions in Sections 7.1 and 7.2 respectively. We discuss the
results for our relaxation solutions in Section 7.3.

TABLE 1
Dataset Statistics (K ¼ 103 andM ¼ 106)

ID Dataset #Nodes #Edges d scmax

Real

D1 ca-CondMat 21K 91K 8.6 25
D2 soc-Epinions1 75K 405K 10.7 67
D3 DBLP 803K 3.2M 8.2 118
D4 wiki-Talk 2.3M 4.6M 3.9 131
D5 as-Skitter 1.7M 11M 13.1 111
D6 uk-2002 18M 261M 28.3 943

Synthetic

S1 Syn-1 20K 229K 22.9 94
S2 Syn-2 40K 432K 21.6 100
S3 Syn-3 60K 682K 22.8 124
S4 Syn-4 80K 890K 22.2 118
S5 Syn-5 100K 1.1M 22.4 134

1. http://dblp.uni-trier.de/xml/
2. http://law.di.unimi.it/datasets.php
3. http://snap.stanford.edu/data/
4. http://santo.fortunato.googlepages.com/benchmark.tgz 5. http://bit.ly/1b6WbSQ

HU ETAL.: ON MINIMAL STEINER MAXIMUM-CONNECTED SUBGRAPH QUERIES 2463

7.1 Effectiveness
We compare the minimal SMCSs and approximate ones
returned by IncER, AppIncER3 and AppIncBER3 respec-
tively. We also evaluate the quality of max-SMCS, local-
SMCS, LCTC and GrCon according to:

(1) Size. The number of nodes in the result graph.
(2) EdgeDensity rr. This measures the density of a

graph [20], [31], and is the ratio of the number
of edges of a graph g to that of a complete graph with
the same set of nodes: rðgÞ ¼ 2jEðgÞj=ðjV ðgÞj	
ðjV ðgÞj � 1ÞÞ.

(3) Connectivity ��. The edge connectivity of the result
graph (Definition 3.1).

Exp-1: Quality Evaluation. For each dataset in D1-D5 and
S1-S5, we randomly select 500 sets of query nodes with jQj
randomly ranging from 1 to 16 and inter-distance l being 2,
and report the average values of size, edge density rr and
connectivity ��.

The results are shown in Fig. 5. Under the SMCS model,
note that solutions with local expansion (local-SMCS,
AppIncBER3, AppIncER3 and IncER) perform better than
max-SMCS in terms of the result size and edge density. A
gigantic number of nodes is returned by max-SMCS.

Moreover, IncER achieves the highest edge density with the
smallest number of nodes. Thus, it is useful to remove nodes
from discovered subgraphs by our solution. The number of
nodes in the subgraphs returned by local-SMCS is around
10 times more than IncER, which shows that using local
expansion alone is not enough, and the refinement step is
necessary. Compared with other community models, we can
observe that 1) IncER performs much better than the k-core
model (GrCon) under all measures; 2) even though the clos-
est k-truss model (LCTC) can also return communities with
small size and high edge density, IncER can return commu-
nities with higher connectivity. Since connectivity is a better
cohesiveness metric as discussed in Section 2, the communi-
ties returned by IncER are more cohesive than those
returned by LCTC and GrCon.

We also evaluate the effectiveness of our solutions using
different kinds of queries on D3 (DBLP), i.e., by varying the
query size jQj from 1 to 16, and the inter-distance l from 1 to
10. For each kind of queries, we randomly generate 500 sets
of query nodes and report the average values of aforemen-
tioned measures. The results of varying the query size jQj
(resp. the inter-distance l) are shown in Fig. 6 (resp. Fig. 7). In
Figs. 6c and 7c, since max-SMCS, local-SMCS, AppIncER3
and IncER all will find subgraphs with same connectivity,
the corresponding lines overlap. We can observe that in

Fig. 5. Quality evaluation on both real and synthetic graphs.

Fig. 6. Quality evaluation on DBLP by varying query size jQj (l ¼ 2).

Fig. 7. Quality evaluation on DBLP by varying inter-distance l (jQj ¼ 3).

Fig. 8. A minimal SMCS of the Amazon network using query Q = {“The
Time Machine (G. Pal, DVD)”, “Planet of the Apes (DVD)”}.

TABLE 2
Quality Measures of the DBLP Case Study with Query

Q = {“Michael Stonebraker”, “Samuel Madden”,
“Daniel J. Abadi”, “Jennie Duggan”}

Quality

Metric
max-SMCS local-SMCS AppIncBER3 AppIncER3 IncER LCTC GrCon

size 171,435 129 17 17 15 83 211

r 0.0001 0.21 0.54 0.54 0.58 0.33 0.09

� 7 7 7 7 7 7 7

TABLE 3
Quality Measures of the DBLP Case Study with Single-Node

Query Q = {“Christian S. Jensen”}

Quality

Metric
max-SMCS local-SMCS AppIncBER3 AppIncER3 IncER LCTC GrCon

size 10,265 39 21 21 21 21 12,423

r 0.004 0.59 1 1 1 1 0.003

� 20 20 20 20 20 20 2

TABLE 4
Quality Measures of the Amazon Case Study with Query

Q = {“The Time Machine (DVD)”, “Planet of the Apes (DVD)”}

Quality

Metric
max-SMCS local-SMCS AppIncBER3 AppIncER3 IncER LCTC GrCon

size 122,219 148 23 23 20 2 143,562

r 0.0001 0.05 0.23 0.23 0.24 1 0.00001

� 4 4 4 4 4 1 1

2464 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 29, NO. 11, NOVEMBER 2017

general the size of results will increase when increasing jQj
and l, while the edge density will decrease. Moreover, as
shown in Fig. 6c, when jQj increases, only our SMCS model
can achieve higher connectivity. As shown in Fig. 7c, when l
increases, the connectivitywill decrease for all methods since
query nodes are farther. Similar to the result obtained from
Fig. 5, compared with other competitors, our solutions can
always return communities with small size, high edge den-
sity and high connectivity.

Exp-2: Case Study.We use the query Q = {“Michael Stone-
braker”, “Samuel Madden”, “Daniel J. Abadi”, “Jennie
Duggan”} on the DBLP dataset. Table 2 shows the quality
measures for different SMCS methods and two other
community models. We found that IncER returns a
small and cohesive 7-connected subgraph (size = 15 and
r = 0.58), which is much better than those returned by
max-SMCS, local-SMCS, LCTC and GrCon. Fig. 1 (in
Section 1) shows the result returned by IncER. All
authors found in the result for this query are established
researchers in databases, and they indeed collaborate
with each other frequently. Due to the large sizes of the
subgraphs returned by max-SMCS, local-SMCS, LCTC

and GrCon, they are not illustrated here. Notice that the
results of both AppIncER3 and AppIncBER3 are all very
close to the one returned by IncER.

In addition, for a single-node query Q = {“Christian
S. Jensen”} on the DBLP dataset, the quality measures of the
results returned by different methods are shown in Table 3.
Our solutions and LCTC can find a 20-connected clique for
“Christian S. Jensen”, which is much better than those
returned by max-SMCS, local-SMCS and GrCon.

Moreover, we also conduct a case study on anAmazon co-
purchasing network6 with 548K nodes and 1.78M edges.
Each node denotes a product, and an edge between two
products indicates that they have been purchased together.
The quality measures of the results returned by different
methods for the query Q = {“The Time Machine (G. Pal,
DVD)”, “Planet of the Apes (DVD)”} are shown in Table 4.
IncER returns a small and cohesive 4-connected subgraph
(size = 20 and r = 0.24) which is much better than those
returned by max-SMCS, local-SMCS, LCTC and GrCon.
Specifically, LCTC cannot find any other nodes since truss-
ness is too restrictive on the triangle structure. GrCon returns
a very large community with 143,562 nodes which is not use-
ful in practice. The result returned by IncER is shown in
Fig. 8. All products found in the result for this query are
science fiction movies (DVD or VHS type), and are highly
connected to each other.

7.2 Efficiency
Wenow evaluate the efficiency of our algorithms forminimal
SMCS queries under different situations. Each experiment
is run three times, and the average CPU time is reported in
seconds. In the experiments, we have not reported the offline
indexing time for computing the connectivity graph and its
maximum spanning tree (MST), since they are already
reported in [6], e.g., 141 seconds for D5 (as-Skitter). We treat
the running time of a query as infinite (Inf) if it exceeds
1 hour.

Fig. 9. Varying query size jQj (l ¼ 2).

Fig. 10. Varying inter-distance l (jQj ¼ 3).

Fig. 11. Varying Steiner-connectivity of Q (jQj ¼ 3, l ¼ 2).

6. http://snap.stanford.edu/data/amazon-meta.html

HU ETAL.: ON MINIMAL STEINER MAXIMUM-CONNECTED SUBGRAPH QUERIES 2465

Exp-3: Effect of Queries. In these experiments, we test our
approaches using different queries. The reported time is the
average time of processing 500 queries.

First, we observe the effect of the query size jQj. We test
five different jQj values in {1, 2, 4, 8, 16}. The running time of
ER, IncER, AppIncER3, AppIncBER3 and Basic on differ-
ent datasets (D1-D5) is shown in Fig. 9. In general, the running
time of all algorithms increases with the query size. Since
the number of nodes in the candidate generated in the
local expansion step increases when jQj increases, the time
cost in both candidate generation step and refinement
step increases. Our algorithms (ER, IncER, AppIncER3 and
AppIncBER3) outperform the baseline algorithm by several
orders of magnitude on all datasets. Moreover, IncER is bet-
ter than ER. For example, on D5 (as-Skitter), IncER is around
10 times faster than ER. Thus, the incremental removal
optimization improves the performance substantially. The
approximation algorithm AppIncER3 further improves
the performance by relaxing the minimality; on D3
(DBLP), AppIncER3 is around 2 times faster than IncER.
AppIncBER3 achieves the highest performance by relaxing
both connectivity and minimality; on D3 (DBLP),
AppIncBER3 is around 10 times faster thanIncER.

We then study the effect of the inter-distance l among
query nodes. The running time of ER, IncER, AppIncER3,
AppIncBER3, and Basic on different datasets (D1-D5)
by varying the inter-distance l (from 1 to 5) of query is illus-
trated in Fig. 10. Similar to the results obtained by varying
the query size, ER, IncER, AppIncER3 and AppIncBER3

outperform Basic by several orders of magnitude on all
datasets. IncER is still better than ER. For example, on D5
(as-Skitter), IncER is around 5.7 times faster than ER.
Again, AppIncBER3 performs the best; on D5, AppIncBER3

is around 45 times faster than ER.
We also evaluate the effect of the Steiner-connectivity

scðQÞ of Q. For each dataset in D1-D5, we select some repre-
sentative values of Steiner-connectivity based on its largest
Steiner-connectivity. For each value of scðQÞ, we randomly
select 500 different query sets with jQj ¼ 3 and l ¼ 2 as fol-
lows. First, we compute the connectivity graph of G, as well
as sc values for each node in G. Second, we randomly select
a node q from the nodes with scðÞ = k, and use Breadth First
Search (BFS) to find a candidate node set, C. During the

procedure of BFS, assuming that the node being visited is u,
an edge ðu; vÞ will be visited iff the distance between q and
v is less than l=2 and scðfu; vgÞ � k. Finally, if we can select
jQj � 1 nodes, say Q0 from the candidate set Cnq, then the
query set Q ¼ q [Q0; otherwise repeat the second step until
a valid query set is generated. The running time of ER,
IncER, AppIncER3, AppIncBER3 and Basic on different
datasets by varying the Steiner-connectivity scðQÞ of query
is illustrated in Fig. 11. Generally, ER, IncER, AppIncER3

and AppIncBER3 outperform the baseline algorithm by sev-
eral orders of magnitude on all datasets. When scðQÞ
increases, the advantage of the approximation algorithm
over others becomes more obvious. For example, on D5 (as-
Skitter), when scðQÞ = 50, AppIncER3 is around 12.5 times
faster than IncER. When scðQÞ increases, the number of
nodes in the result increases, and the approximation algo-
rithm stops earlier while the exact one needs a lot of time to
do minimality testing on the result graph. AppIncBER3

which combines both connectivity and minimality relaxa-
tions still is the fastest.

Finally, we report the efficiency comparison between our
solution (AppIncBER3) and the best competitor LCTC on
the DBLP dataset by varying jQj from 1 to 16 and l from 1 to
5. As shown in Table 5, our solution is around twice faster
than LCTC in almost all cases.

Exp-4: Scalability Testing. We test the scalability of our
fastest algorithm (AppIncBER3) on the largest dataset D6
(uk-2002) which contains 261 million edges. The reported
time is the average time of processing 500 queries. Table 6
shows the running time of AppIncBER3 on D6 when vary-
ing the query size jQj, inter-distance l and Steiner-connec-
tivity scðQÞ. It shows that AppIncBER3 has ideal scalability
and is quite efficient even for such a large network.

We also conduct experiments by varying Steiner-connec-
tivity scðQÞ with large jQj (=16) and l (=5). The result is
reported in Table 7. Similar to the results obtained in Table 6,
AppIncBER3 can handle such kinds of queries efficiently in
such a large dataset.

Exp-5: Cache-Based Algorithms. To evaluate the cache-based
algorithms for single-node queries, we compare the exact
algorithm IncCache and the approximate version AppInc-

Cache3 with two other methods without caching, IncER and
AppIncER3, respectively. We set the parameter h to 10,000,
which is selected to balance the query processing time and
the effectiveness of caching by testing h 2 ½1;000; 20;000�.
We conduct experiments as follows. 10K single-node queries
(jQj ¼ 1) are generated randomly for each dataset. We report
the running time of the four algorithms in Table 8. For
IncCache and AppIncCache3, we report the average query
time ttotal, the average time tcache for caching, the amortized
time tamort, and the additional space cost for caching. For both
IncCache and AppIncCache3, the average time tcache for
caching does not dominate the query time ttotal. For instance,
on D3 (DBLP), the time tcache for caching of IncCache

(AppIncCache3) accounts for 10 percent (20 percent) of the
whole query time. Although the query time ofIncCache and

TABLE 5
Efficiency Comparison on DBLP (in Seconds)

jQj 1 2 4 8 16
LCTC 0.3 3.6 3.7 4.0 4.3
AppIncBER3 0.8 1.2 1.5 2.2 3.2

l 1 2 3 4 5
LCTC 3.6 3.7 3.8 3.9 3.9
AppIncBER3 1.2 1.3 1.6 1.8 1.8

TABLE 6
Scalability Testing for AppIncBER3 on D6 (in Seconds)

jQj 1 2 4 8 16
Time 13:1
 0:9 21:3
 1:2 28:2
 1:5 32:5
 1:9 37:9
 2:1

l 1 2 3 4 5
Time 34:3
 1:8 41:4
 2:3 27:5
 1:6 32:4
 1:7 29:6
 1:5

scðQÞ 10 20 30 40 50
Time 19:1
 1:3 17:1
 1:0 16:1
 1:6 18:6
 2:7 18:4
 2:3

TABLE 7
Scalability Testing for AppIncBER3 on D6 with jQj ¼ 16

and l ¼ 5 (in Seconds)

scðQÞ 10 20 30 40 50
Time 36:1
 2:3 32:5
 2:5 29:3
 3:3 31:7
 4:1 37:9
 5:2

2466 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 29, NO. 11, NOVEMBER 2017

AppIncCache3 is close to IncER and AppIncER3 respec-
tively, their amortized time tamort, which is the expected aver-
age query time for future queries, is much smaller than
IncER and AppIncER3. For example, on D3 (DBLP), the
amortized time tamort of IncCache (AppIncCache3) is 5.4
(4.6) times faster than the query time of IncER (AppIncER3).
Moreover, the space cost is relatively very small for caching.

We also conduct experiments by varying the number of
single-node queries from 1K to 10K. The results on the
DBLP dataset are shown in Table 9. We can observe that the
time cost is stable when the number of queries increases.
Meanwhile, the space cost for caching will increase because
more results are cached. Nevertheless, the space cost is rela-
tively very small.

7.3 Results on Constraint Relaxation
In what follows, we will first evaluate the error of connectiv-
ity by adding a threshold in the Expand step. Then we evalu-
ate our approximation techniques in the Refine step and
discuss how to set parameters.

Exp-6: Connectivity Relaxation. We evaluate the sensitivity
of the local expansion threshold u and the error of connectivity
inAppIncBER3 onD3 (DBLP). To evaluate the sensitivity of u,
for each u in {1K, 5K, 10K, 15K, 20K}, we randomly select 500

different query sets with jQj ranging from 1 to 16 and the
inter-distance being 2. The running time and the average per-
centage errors of the connectivity (k0) of detected minimal
SMCSs by AppIncBER3 to the one (k) returned by exact algo-
rithms, e.g., ER, are reported in Fig. 12 (%error ¼ ðk� k0Þ=k).
Both of the running time and the average percentage errors
increase when u increases. We observe that when u equals to
10K, AppIncBER3 can achieve the best balance between the
running time and the loss of connectivity. For the evaluation
of the error of connectivity in AppIncBER3, the average per-
centage errors are reported in Table 10, where we vary the
query size jQj, inter-distance l and Steiner-connectivity scðQÞ
as mentioned in Section 7.2. The connectivity of detectedmin-
imal SMCSs obtained by AppIncBER3 are very close to the
exact solutions. Combined with the analysis on efficiency in
Section 7.2,AppIncBER3 balances the efficiency and effective-
nesswell.

Exp-7: Minimality Relaxation.We evaluate the performance
of the approximation algorithm (AppIncERv) by varying
the termination threshold v, from 2 to 5. To investigate
the actual approximation ratio and failure probability,
for each value of v from 2 to 5, we select a pair of ðr; dÞ, i.e.,
(8, 0.02)(

log 1
0:02

log 8 � 1:88 < 2), (5, 0.01)(
log 1

0:01
log 5 � 2:86 < 3),

(6, 0.001)(
log 1

0:001
log 6 � 3:86 < 4) and (4, 0.001)(

log 1
0:001

log 4 � 4:98 < 5).

We randomly select 500 sets of query nodes with size ran-
domly ranging from 1 to 16 and the inter-distance l being 2.
The query time, actual approximation ratio and failure proba-
bility of AppIncER2, AppIncER3, AppIncER4 and
AppIncER5 are shown in Fig. 13. In Fig. 13a, we also report

TABLE 8
Single-Node Query Time (in Seconds)

Graph

Exact algorithm Approximation algorithm

IncER

IncCache

AppIncER3

AppIncCache3

tcache ttotal tamort Space tcache ttotal tamort Space

D1 0:1
 0:02 0:001
 0:0001 0:02
 0:002 0.016 1 MB 0:04
 0:01 0:01
 0:001 0:02
 0:0001 0.02 2 MB
D2 1:5
 0:4 0:4
 0:1 1:3
 0:1 1.0 3 MB 0:5
 0:1 0:1
 0:04 0:5
 0:03 0.4 6 MB
D3 8:0
 2:5 0:7
 0:1 6:7
 0:5 1.5 14 MB 3:6
 1:2 0:8
 0:2 3:8
 0:2 0.8 37 MB
D4 3:7
 1:3 0:5
 0:1 2:4
 0:3 2.2 26 MB 1:4
 0:6 0:2
 0:1 1:0
 0:1 0.9 27 MB
D5 10:6
 2:5 1:5
 0:2 12:0
 1:0 3.4 22 MB 7:6
 1:4 2:0
 0:4 8:9
 0:4 2.2 41 MB

TABLE 9
Varying the Number of Single-Node Queries

on DBLP (in Seconds)

Queries 1K 3K 5K 7K 10K

IncCache tcache 0:6
 0:2 0:7
 0:1 0:6
 0:1 0:6
 0:1 0:7
 0:1

ttotal 6:3
 1:5 6:3
 0:8 6:1
 0:6 6:0
 0:5 6:7
 0:5

tamort 1.2 1.2 1.3 1.3 1.5

Space 8.6 MB 10.2 MB 11.6 MB 13 MB 14.4 MB

AppIncCache3 tcache 0:9
 0:4 1:3
 0:4 1:1
 0:2 1:0
 0:2 1:1
 0:2

ttotal 4:3
 0:7 4:1
 0:3 3:8
 0:2 3:7
 0:2 3:8
 0:2

tamort 0.7 0.7 0.7 0.7 0.8

Space 10.8 MB 19 MB 23.7 MB 28.7 MB 37 MB

Fig. 12. Evaluation of u on D3 (DBLP).

TABLE 10
Error of Connectivity on D3 (DBLP)

jQj 1 2 4 8 16
%error 1%
 0.2% 1%
 0.2% 2%
 0.4% 3%
 0.5% 6%
 0.9%

l 1 2 3 4 5
%error 1%
 0.4% 1%
 0.5% 2%
 0.6% 2%
 0.7% 2%
 0.8%

scðQÞ 4 8 12 16 20
%error 1%
 0.5% 4%
 0.7% 3%
 0.7% 1%
 0.2% 0%

Fig. 13. Minimality approximation performance.

HU ETAL.: ON MINIMAL STEINER MAXIMUM-CONNECTED SUBGRAPH QUERIES 2467

the query time of the exact algorithm IncER. In general, all
these approximation algorithms run much faster than
IncER, and their actual average approximation ratios and
failure probabilities are all much lower than the theoretical
values. One exception is that the failure probability of
AppIncER2 onD5 (as-Skitter) is much larger than its theoret-
ical value, because the value of v in AppIncER2 is too small
(v ¼ 2) which leads to a high variance. Specifically,
AppIncER2 is the fastest approximation algorithm on all
datasets, but its actual approximation ratio and failure prob-
ability are the highest. Although AppIncER5 is the slowest,
it achieves the best actual approximation ratio and failure
probability. We observe that a larger v leads to higher accu-
racy. We also see that AppIncER3 achieves the best balance
among the running time, approximation ratio, and failure
probability.

Moreover, we also conduct experiments on D3 (DBLP) by
varying the query size jQj from 1 to 16 with the inter-dis-
tance l being 2. For each kind of queries, we randomly gen-
erate 500 sets of query nodes and report the average values
of query time, actual approximation ratio and failure proba-
bility for each solution. The results are shown in Fig. 14.
Similar to the results obtained from Fig. 13, AppIncER3

achieves the best balance. Hence, we thus suggest to set v to
3 (with r ¼ 5 and d ¼ 0:01).

Summary. In our experiments, we have tested different
kinds of query settings, i.e., the query size jQj varies from 1
to 16 and the inter-distance l varies from 1 to 10, which
cover a wide range of common queries. Moreover, the aver-
age degree of real and synthetic datasets in our experiments
varies from 3.9 to 28.3, which is common in a variety of
graphs. All these experiments show that our model per-
forms better than other competitors in terms of fewer nodes,
and higher edge density and connectivity. In addition, the
efficiency of our minimal SMCS solutions addresses several
orders of magnitude improvement over basic solutions.
The proposed cash-based solution for single-node SMCS
queries demonstrates further improvement in speed.
Finally, following the recommended parameter settings, the
loss caused by connectivity relaxation and minimality relax-
ation is negligible.

8 CONCLUSIONS

In this paper, we examine the minimal SMCS problem. We
develop Expand-Refine algorithms for finding minimal
SMCSs. In addition, we propose two strategies to further
improve the efficiency by relaxing connectivity and mini-
mality. We also design fast cache-based processing techni-
ques for single-node queries. Our experiments on large
datasets demonstrate the effectiveness and efficiency of our
proposed solutions. We plan to extend our techniques to
cohesive subgraph search under other metrics.

In the future, we also plan to investigate how to extend
cache-based solution to support multiple-node queries.
Let Q be a multiple-node query with jQj > 1. A naive
extension is described as follows. After Q is initiated, we
compute its minimal SMCS, say G0, using our ER algorithm.
Then, we extract all possible multiple-node sets from G0,
whose sc value is the same as that of Q. Next, we compute
all minimal SMCSs for all extracted sets using this method.
However, the number of sets with a specific sc value, i.e.,
Oð2jV ðG0ÞjÞ, can be very large. Hence, the total time of com-
puting the minimal SMCSs for these sets can be extremely
expensive. A lot of space is also needed to store the results.
An interesting problem is then to study which sets should
be chosen, for which their minimal SMCSs are computed,
so that they can have a higher chance to be used by multi-
ple-node query requests started later. We consider this
problem as a future work.

ACKNOWLEDGMENTS

Reynold Cheng, Jiafeng Hu, Siqiang Luo, and Yixiang Fang
were supported by the Research Grants Council of Hong
Kong (RGC Projects HKU 17229116 and 17205115) and
the University of Hong Kong (Projects 102009508 and
104004129). Xiaowei Wu was supported by the Hong Kong
RGC grant 17217716. This research is conducted in part using
theHKU ITS research computing facilities. The authorswould
like to thank the reviewers for their insightful comments.

REFERENCES

[1] T. Akiba, Y. Iwata, and Y. Yoshida, “Linear-time enumeration
of maximal K-edge-connected subgraphs in large networks by
random contraction,” in Proc. 22nd ACM Int. Conf. Inf. Knowl.
Manage., 2013, pp. 909–918.

[2] O. Amini, D. Peleg, S. P�erennes, I. Sau, and S. Saurabh, “Degree-
constrained subgraph problems: Hardness and approximation
results,” in Proc. Int. Workshop Approximation Online Algorithms,
2008, pp. 29–42.

[3] S. Asthana, O. D. King, F. D. Gibbons, and F. P. Roth, “Predicting
protein complex membership using probabilistic network
reliability,” Genome Res., vol. 14, pp. 1170–1175, 2004.

[4] N. Barbieri, F. Bonchi, E. Galimberti, and F. Gullo, “Efficient and
effective community search,” Data Mining Knowl. Discovery,
vol. 29, no. 5, pp. 1406–1433, Sep. 2015.

[5] M. G. Bell and Y. Iida, Transportation Network Analysis. Hoboken,
NJ, USA: Wiley, 1997.

[6] L. Chang, X. Lin, L. Qin, J. X. Yu, and W. Zhang, “Index-based
optimal algorithms for computing steiner components with maxi-
mum connectivity,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2015, pp. 459–474.

[7] L. Chang, J. Yu, and L. Qin, “Fast maximal cliques enumeration
in sparse graphs,” Algorithmica, vol. 66, no. 1, pp. 173–186, 2013.

[8] L. Chang, J. X. Yu, L. Qin, X. Lin, C. Liu, andW. Liang, “Efficiently
computing k-edge connected components via graph decom-
position,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2013,
pp. 205–216.

[9] J. Cheng, Y. Ke, S. Chu, and M. T. €Ozsu, “Efficient core decompo-
sition in massive networks,” in Proc. IEEE 27th Int. Conf. Data
Eng., 2011, pp. 51–62.

[10] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu, “Finding maxi-
mal cliques in massive networks by H*-graph,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2010, pp. 447–458.

[11] N. Chiba and T. Nishizeki, “Arboricity and subgraph listing algo-
rithms,” SIAM J. Comput., vol. 14, no. 1, pp. 210–223, 1985.

[12] A. Clauset, “Finding local community structure in networks,”
Phys. Rev. E, vol. 72, Aug. 2005, Art. no. 026132.

[13] J. Cohen, “Trusses: Cohesive subgraphs for social network analysis,”
Nat. Secur. Agency, Fort Meade, MD, USA, 2008, http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.505.7006&rep=rep1&type=pdf

Fig. 14. Minimality approximation performance on DBLP by varying
query size jQj (l ¼ 2).

2468 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 29, NO. 11, NOVEMBER 2017

[14] C. J. Colbourn and C. Colbourn, The Combinatorics of Network Reli-
ability. New York, NY, USA: Oxford Univ. Press, 1987.

[15] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang, “Online search
of overlapping communities,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2013, pp. 277–288.

[16] W. Cui, Y. Xiao, H. Wang, andW. Wang, “Local search of commu-
nities in large graphs,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2014, pp. 991–1002.

[17] Y. Fang, R. Cheng, X. Li, S. Luo, and J. Hu, “Effective community
search over large spatial graphs,” Proc. VLDB Endowment, vol. 10,
no. 6, pp. 709–720, 2017.

[18] Y. Fang, R. Cheng, S. Luo, and J. Hu, “Effective community search
for large attributed graphs,” Proc. VLDB Endowment, vol. 9, no. 12,
pp. 1233–1244, 2016.

[19] Y. Fang, R. Cheng, S. Luo, J. Hu, and K. Huang, “C-explorer:
Browsing communities in large graphs,” Proc. VLDB Endowment,
vol. 10, no. 12, Aug. 2017.

[20] A. Gibbons, Algorithmic Graph Theory. Cambridge, U.K.:
Cambridge Univ. Press, 1985.

[21] J. Hu, X. Wu, R. Cheng, S. Luo, and Y. Fang, “Querying minimal
Steiner maximum-connected subgraphs in large graphs,” in Proc.
25th ACM Int. Conf. Inf. Knowl. Manage., 2016, pp. 1241–1250.

[22] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying
K-truss community in large and dynamic graphs,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2014, pp. 1311–1322.

[23] X. Huang and L. V. S. Lakshmanan, “Attribute-driven community
search,” Proc. VLDB Endowment, vol. 10, no. 9, pp. 949–960, May
2017.

[24] X. Huang, L. V. S. Lakshmanan, J. X. Yu, and H. Cheng,
“Approximate closest community search in networks,” Proc.
VLDB Endowment, vol. 9, no. 4, pp. 276–287, Dec. 2015.

[25] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark
graphs for testing community detection algorithms,” Phys. Rev. E,
vol. 78, no. 4, 2008, Art. no. 046110.

[26] P. Lee and L. V. Lakshmanan, “Query-driven maximum quasi-
clique search,” in Proc. SIAM Int. Conf. Data Mining, 2016, pp. 522–
530.

[27] R.-H. Li, L. Qin, J. X. Yu, and R. Mao, “Influential community
search in large networks,” Proc. VLDB Endowment, vol. 8, no. 5,
pp. 509–520, Jan. 2015.

[28] R.-H. Li, J. Yu, and R. Mao, “Efficient core maintenance in large
dynamic graphs,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 10,
pp. 2453–2465, Oct. 2014.

[29] M. Maresca and H. Li, “Connection autonomy in SIMD com-
puters: A VLSI implementation,” J. Parallel Distrib. Comput., vol. 7,
no. 2, pp. 302–320, 1989.

[30] K. Mehlhorn, “A faster approximation algorithm for the Steiner
problem in graphs,” Inf. Process. Lett., vol. 27, no. 3, pp. 125–128,
1988.

[31] L. Qin, R.-H. Li, L. Chang, and C. Zhang, “Locally densest
subgraph discovery,” in Proc. 21th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2015, pp. 965–974.

[32] S. B. Seidman, “Network structure and minimum degree,” Social
Netw., vol. 5, no. 3, pp. 269–287, 1983.

[33] M. Sozio and A. Gionis, “The community-search problem and
how to plan a successful cocktail party,” in Proc. 16th ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2010, pp. 939–
948.

[34] V. Spirin and L. A. Mirny, “Protein complexes and functional
modules in molecular networks,” Proc. Nat. Academy Sci. United
States America, vol. 100, no. 21, pp. 12123–12128, 2003.

[35] J. Wang and J. Cheng, “Truss decomposition in massive
networks,” Proc. VLDB Endowment, vol. 5, no. 9, pp. 812–823,
2012.

[36] S. Wasserman and K. Faust, Social Network Analysis: Methods and
Applications. Cambridge, U.K.: Cambridge Univ. Press, 1994.

[37] D. R. White and F. Harary, “The cohesiveness of blocks in social
networks: Node connectivity and conditional density,” Sociological
Methodology, vol. 31, no. 1, pp. 305–359, 2001.

[38] Y. Wu, R. Jin, J. Li, and X. Zhang, “Robust local community detec-
tion: On free rider effect and its elimination,” Proc. VLDB Endow-
ment, vol. 8, no. 7, pp. 798–809, 2015.

[39] Z. Zeng, J. Wang, L. Zhou, and G. Karypis, “Out-of-core coherent
closed quasi-clique mining from large dense graph databases,”
ACM Trans. Database Syst., vol. 32, no. 2, 2007, Art. no. 13.

Jiafeng Hu received the BEng and ME degrees
from Jilin University and the University of Chinese
Academy of Sciences, in 2011 and 2014, res-
pectively. He is currently working toward the PhD
degree in the Department of Computer Science,
University of Hong Kong (HKU), under the super-
vision of Dr. Reynold Cheng. His research inter-
ests include spatio-temporal data management
and graph databases.

Xiaowei Wu received the BEng degree from the
University of Science and Technology of China, in
2011 and the PhD degree in computer science
from the University of Hong Kong, in 2015. He is
currently a post-doctoral research fellow in the
Department of Computer Science, The University
of Hong Kong. His research interests include
combinatorial optimization, approximation algo-
rithms, and graph theory.

Reynold Cheng received the PhD degree from
the Department of Computer Science, Purdue
University, in 2005. He is an associate professor
in the Department of Computer Science, Univer-
sity of Hong Kong. He received an Outstanding
Young Researcher Award in 2011-2012 from
HKU. He has served as a PC member and
reviewer for international conferences (e.g.,
SIGMOD, VLDB, ICDE, and KDD) and journals
(e.g., the IEEE Transactions on Knowledge and
Data Engineering, the ACM Transactions on

Database Systems, the Very Large Data Base Journal, and the Informa-
tion Systems). He is an associate editor of the IEEE Transactions on
Knowledge and Data Engineering, and was on the EIC selection commit-
tee of the IEEE Transactions on Knowledge and Data Engineering. He is
a member of the IEEE.

Siqiang Luo received the BEng and MS degrees
from Fudan University, in 2010 and 2013, respec-
tively. He is working toward the PhD degree in the
Department of Computer Science, University of
Hong Kong (HKU) under the supervision of Prof.
Benjamin C.M. Kao and Dr. Reynold Cheng. His
research interests include the areas of data man-
agement and analytics.

Yixiang Fang received the BEng and MS
degrees from the Harbin Engineering University
and ShenZhen Graduate School, Harbin Institute
of Technology, in 2010 and 2013, respectively. He
is currently working toward the PhD degree in the
Department of Computer Science, University of
Hong Kong (HKU) under the supervision of
Dr. Reynold Cheng. His research interests mainly
focus on big data analytics on spatial-temporal
databases, graph databases, uncertain data-
bases, and web data mining.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HU ETAL.: ON MINIMAL STEINER MAXIMUM-CONNECTED SUBGRAPH QUERIES 2469

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

